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ABSTRACT 

The volumetric mass transfer coefficient kL.a was calculated using two gases (air and CO2) in 

water and NaOH solution. The experiments were carried out using 0.1 m column diameter. Empirical 

and Artificial Neural Network (ANN) correlation were developed to predicted mass transfer 

coefficient in form of dimensionless groups (Sh, Re,Bo and We). The use of Back Propagation Neural 

Network (BPNN) gave better results than other correlations found in literature and than the empirical 

one found in this study.  
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 INTRODUCTION 

One of the most important applications of the gas-liquid reaction is the bubble column reactor. 

Bubble columns are widely used in industry for carrying out a variety of chemical reactions such as 

hydrogenations, oxidations and the Fischer–Tropsch synthesis. Mass transfer is one of the key 

parameters determining the design and scale up of bubble column reactors used in a wide spectrum of 

industrial process(Kantarci,et al;2005). 

Mass transfer coefficients depend strongly on the fluid dynamics and are mostly quantified 

through correlation in which the gas holdup plays an important role. Gas holdup is a dimensionless 

key parameter for design purposes that characterizes transport phenomena of bubble column systems. 

It is basically defined as the volume fraction of gas phase occupied by the gas bubbles. Gas holdup for 

the two phase bubble column reactor can be estimated using the following relation (Pandit and Doshi, 

2005; Vandu and Krishna R., 2004): 
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Anther factor that effecting mass transfer is the superficial gas velocity, which is the average 

velocity of the gas that is sparged into the column, and it is simply expressed as the volumetric flow 

rate divided by the cross-sectional area of the column (Lakota et. al. 2002, Bouaifi et. al. 2001). The 

volumetric gas to liquid (GL) mass transfer coefficient (kL.a) in bubble column reactor is mainly 

determined by (i) the GL interfacial area (a) determined by the bubble diameter (db) and the gas 

holdup εG and (ii) the liquid side mass transfer coefficient (kL) is determined by the slip velocity 

between bubble and liquid phase (Ub) and the bubble diameter. Gas-liquid interfacial area (a) is 

determined by the gas holdup and the bubble diameter (equation 2).The gas-liquid interfacial area (a) 

is calculated too from video imaging (Mouza et. al., 2004, Krishna and van Baten 2003). 
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ARTIFICIAL NEURAL NETWORK MODEL 

Artificial Neural Network (ANN) models have been recently given an increasing attention in 

chemical engineering applications, including parameters prediction, modeling, process optimization, 

process simulation and process control. Back Propagation Neural Network (BPNN) and radial biasis 

function are employed, whereas for problems involving data clustering, adaptive resonance theory, 

network for binary signals and Kohonen self-organizing map are used (Shaikh A., Al-Dahhan M. 

2003). A back propagation network with a single hidden layer of processing elements can model any 

continuous function to any degree of accuracy. , since back propagation is based on a relatively simple 

form of optimization known as gradient descent, mathematically astute observers soon proposed 

modifications using more powerful techniques such as conjugate gradient and Newton’s methods. 

Back propagation is still the most widely used variant. Its two primary virtues are that it is simple and 

easy to understand, and it works for a wide range of problems. (Bao, 2005; Young 2001). The basic 

back propagation algorithm consists of three steps. The input pattern is presented to the input layer of 

the network. These inputs are propagated through the network until they reach the output units. This 

forward pass produces the actual or predicted output pattern. Because back propagation is a 

supervised learning algorithm, the desired outputs are given as part of the training vector. The actual 

network outputs are subtracted from the desired outputs and an error signal is produced. This error 

signal is then the basis for the back propagation step, whereby the errors are passed back through the 

neural network by computing the contribution of each hidden processing unit and deriving the 

corresponding adjustment needed to produce the correct output. The connection weights are then 

adjusted and the neural network has just “learned” from an experience (Rzempoluck E. J. 1998). 

Adding a single layer of hidden units turns the linear neural network into a nonlinear one, 

capable of performing multivariate logistic regression, but with some distinct advantages over the 

traditional statistical technique (Wu R. C. 1997, You X. Y. and Yang Z. S. 2003).  

 

 



Journal of Engineering  Volume 13  June 2007         Number 2  
 

 

 1329

 

EXPERIMENTAL WORK 

The schematic of the bubble column reactor setup is illustrated in Fig1. The column is 

constructed from QVF Pyrex glass. The inside diameter of bubble column reactor is (0.1 m) and its 

height is (1.5 m). 

 

1- QVF bubble column  

2- Sampling valve 

3- Gas distributor 

4- Drain valve 

5- Drain  

6- Rotameters  

  

7- Regulating valves 

8- CO2 cylinder 

9- Air compressor 

10- Vent valve. 

11-  Pressure Gauge 

12-  Photo camera 

Fig. 1, Typical experimental set-up for 0.1 m diameter column 

 

The perforated plate used in the bubble column is constructed from aluminum of (2 

mm) thickness with perforated holes of 2 mm diameter on a triangular pitch of 11 mm. The 

total holes were 79 holes as shown in Fig.2. 

EXPERIMENTAL PROCEDURE 

(i) Using a stationary liquid phase of 2500 ml tap water containing 0.7 gm sodium 

sulfate and 0.0025 gm cobalt for oxygen scavenging from the water, air was 

introduced into the bubble column and at varying flow rates of 0.886,2,3,5 and 7 

m
3
/hr. Samples of water from the column were taken every 30 seconds and were 

tested for dissolved oxygen using Winkler titration. 

(ii) Same as above except that the gas was 50-50 air and carbon monoxide and the 

liquid was sodium hydroxide solution. And the liquid samples were analyzed for 

sodium carbonate content using standard method. 
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Fig.2, Gas Distributor. 

 

RESULTS AND DISCUSSION 

For air-water system, Fig.3, shows the relation between the ratio C/C
*
 and time for 

different gas velocities. It’s obvious that increasing air velocity decreases the   time needed for 

saturation. 

For carbon dioxide- sodium hydroxide system, Fig.4, illustrates the variation of CO2 

concentration profile with time. It can be seen that increasing normality causes an increase in 

CO2 absorption due to increasing the reaction rate 

 

 

CALCULATION OF GAS HOLDUP 

Gas holdup was determined using visual measurements. For each run, the gas flow rate 

was adjusted with sufficient time given for steady state to be reached in the column after 

which the increase in dispersion height was recorded; Fig. 5, shows the change of gas holdup 

with superficial gas velocity. 
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Fig. 3, Transient approach to steady state in bubble column reactor (For air- water system. 

 

 

Fig.4, CO2 absorption in NaOH solution. (Mix: mean Air-CO2 gas mixtures). 
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Fig. 5,  Gas holdup εG as a function of superficial gas velocity (Air-water). 

 

Calculation of Bubble Diameter 

With the aid of the Bhavaraju et al. (1978) correlation that shows below, the bubble size 

diameter was calculated. 
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Fig. 6  shows the bubble distribution in the bubble column reactor with the superficial gas velocity. 

Calculation of Mass Transfer Coefficient  

For calculating volumetric mass transfer coefficient; an equation developed by Vandu and 

Krishna (2003) based on two film theory was used:  
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Fig. 6, Bubble size  vs. superficial gas velocity (Air-water). 

 

The only unknown constant in equation (4) is kL.a; which can be determined by a regression 

of equation (4) to the actual concentration data. With the aid of STATISTCA for Window Release 

5, (1995), equation (4) can be solved to find kL.a. Fig. 7, shows the volumetric mass transfer 

coefficient kL.a in relation to superficial gas velocity. Increasing the superficial gas velocity leads to 

increasing in kL.a. With the aid of equation (2), interfacial area and mass transfer coefficient kL 

were calculated. Fig. 8, and 9 show kL and (a) as a function to superficial gas velocity. Comparison 

between the two figures shows no significant variation of kL with gas superficial gas velocity but 

(a) increases significantly with increasing UG. Similar findings were reported by Behkish, (2004); 

Kantarci et. al.,(2005); and Ruthiya, (2005). 
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Fig. 7, kL.a (s
-1

) vs. superficial gas velocity UG (m/s) (Air-water). 

 

 

 

Fig. 8, Variation of kL with superficial gas velocity (Air-water). 

 

 

Fig. 9, Variation of interfacial area with superficial gas velocity (Air-water). 
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Fig.10, kL.a as a function of NaOH normality (CO2- NaOH). 

  

 

For CO2- NaOH system, Fig. 10, shows the volumetric mass transfer coefficient calculated 

using equation (4) and STATISTCA for Window Release 5, (1995). 

 

CORRELATION OF MASS TRANSFER COEFFICIENT 

Two approaches were used to correlate the experimental mass transfer data obtained in this 

search. The first method was to develop empirical correlations, and the second was to use ANN 

correlation. A literature search as listed in Table (1) for bubble column reactor was conducted to 

obtain mass transfer data. 

 

 

Table 1, Literature search for air-water system and 0.1 m column diameter 

No. Authors Operating Condition 
No. of 

points 

1 
(Krishna and Van 

Baten, 2003). 

do=0.5 mm 

No=1200 
7 

2 (Vandu, 2004) 
do=0.5 mm 

No=199 
21 
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EMPIRICAL CORRELATION 

The kL values obtained in this study for oxygen dissolved in water in bubble column reactor 

along with the literature data given in the references listed in Table (1) were correlated using   

dimensionless     groups; the correlation was calculated using STATISTCA for Window Release 5, 

(1995): 

0.2680.040.88  WeBo Re 1.63Sh −

=      (5) 

It should be noted that all dimensionless groups in equation (5) are based on the physical 

properties of fluid which listed in Table (2), also Table (3) showes The limits of dimensionless 

groups. 

 

Table 2, physical properties of air-water system (Ruthiya, 2005) 

Fluid 
Density 

Kg/m
3 

Viscosity 

Pa.s 

Surface 

Tension 

N/m 

Diffusivity 

m
2
/s 

 

Water 998 1*10
-3 

72*10
-3 

2.11*10
-9 

Air 1.3 1.7*10
-3

 72*10
-3

 1*10
-5

 

 

Table 3, The limits of Dimensionless groups. 

No. Variable Minimum Maximum 

1 Bo 0.247 19.3 

2 We 0.0003 49.93 

3 Re 110 2887.4 

4 Sh 87.94 3121.9 

 

ARTIFICIAL NEURAL NETWORK CORRELATION  

Using the Simulent version 3.05 (1997) computer software, ANN correlation were 

developed to predicte the mass transfer coefficient in bubble column using kL values obtained in 

this study for oxygen dissolved in water in bubble column reactor along with the literature data 

given in the references listed in Table 1. Fig.11, shows the architecture of the BPNN with three 

inputs, one hidden layer with four nodes and one output. Table 4 shows the weighting parameters 

produced by training the net.  
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Table 4, Weighted parameters for trained BPNN. 

 

wij 

1 2 3 4 5 

1 -45.716 23.269 -69.555 11.38  

2 8.695 1.8127 2.7085 -1.71227  

3 19.0316 -5.265 15.374 1.0333  

4 8.257 2.096 3.393 -1.097  

 

 wjk 

1 -0.7308 -5.0748 1.67166 6.8745 1.312057 

 

Fig. 11, ANN architecture 

 

Comparison of the ANN Correlation with the Published Correlations 

The literature correlations listed in Table 5 along with equation (5) were used to predict the 

mass transfer through Sherwood number. Fig.12, shows the comparison between the experimental 

and predicate Sherwood number of different correlations. Table 6 shows the comparison between 

the AARE and σ for the different correlations. It is obvious that ANN correlation is a better choice 

to correlate the experimental data through its lower values of AARE and σ (12.79% and 10%). 



A. A. Al-Hemiri                                                                                                                 Prediction of Mass Transfer Coefficient in Bubble Column 

  S. A. Salih                                                                                                                        using Column using Artificial Neural Network       
  

 1338

 

Fig. 12, comparison between the experimental and predicted Sherwood number of different 

correlations. 

 

Table 5, Various correlations to predicate Sh No.( adopted from Ruthiya, 2005) 

No. Authors Correlations 

1 Higbies (1960) 2
1

2
1

Sc1.13ReSh =  

2 
Moo-Young and 

Calerbank (1961) 
2

1
3

2

Sc Re 0.53Sh =  

3 Hughmark (1967) 0.630.86 Sc Re 0.01922Sh +=  

4 
Akita and Yoshida, 

(1974) 
8

3
3

1
2

1

Bo Sc Re 0.6Sh =  

5 Schuegerl, (1977) 2
1

4
3

Sc Re 0.15Sh =  

6 Ruthiya, (2005) 0.7682
1

2
1

BoSc0.083ReSh =  

 

 

 

 

Table 6, Comparison between the AARE and σ for the different correlations. 
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No. Correlations AARE % σ % 

1 Higbie 68.3 49.2 

2 Moo-Young 80.7 78.6 

3 Hughmark 56.5 25.9 

4 
Akita and 

Yoshida 
67.85 22.1 

5 Schuegerl 48.9 20.8 

6 Ruthiya 79.2 26.3 

7 
Empirical 

(This study) 
41.2 30.17 

8 
ANN 

(This study) 
12.79 10.0 

  

 

CONCLUSIONS 

The study of mass transfer parameters led to the following conclusions: 

� kL.a increased  with superficial gas velocity. 

� The gas-liquid bubble interfacial area (a) increased as superficial gas velocity increased, while 

no significant increase of kL with superficial gas velocity was observed.   

� The volumetric mass transfer coefficient kL.a for CO2-NaOH system increased with increasing 

the normality of NaOH solution and more increased when pure gas was used 

�. The correlation proposed by using BPNN shows less AARE and σ (12.79% & 10.0% ) 

respectively ,than other empirical correlations found in literature. An empirical correlation was 

proposed with AARE, σ and R equal to (41.2 %, 30.17% and 93%) respectively. From above, the 

use of BPNN is a good choice for predicting mass transfer coefficient. 

 

NOMENCLATURE  

a  Gas-liquid interfacial area per unit volume of liquid, m
-1

; 

AC  Cross sectional area of the reactor column, m
2 

; 

CA Concentration of the gas A in the liquid bulk, kmol m
-3

; 

C*  Solubility of the gas at equilibrium, kmol m
-3

; 

CL  Concentration of the gas in the liquid bulk, kmol m
-3

; 

DAB  Diffusivity of gas A in the liquid B, m
2
 s

-1
; 
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db  Gas bubble diameter, m ; 

DC  Diameter of the reactor column, m; 

do  Orifice diameter, m; 

g  Gravitational constant, m s
-2

; 

H  Henry’s Law Constant, bar m
3
 kmol

-1
; 

HC  Clear liquid height, m; 

HD Dispersed liquid height, m; 

Ko.a Over all mass transfer coefficients, m s
-1

; 

k  Phase mass transfer coefficient, m s
-1

; 

kL.a  Volumetric liquid-side mass transfer coefficient, s
-1

; 

N number of input data for train;  

No  Number of openings on the gas sparger; 

P  Pressure, bar; 

PT  Total pressure, bar; 

Q  Phase flow rate, m
3
 s

-1
; 

R gas constant: 8.314 KPa.m
3
 Kmol

-1
. 

o
K

-1
; 

t  Time, s; 

T  Temperature, 
o
K; 

U  Superficial velocity, m s
-1

; 

Ub  Bubble rise velocity, m s
-1

; 

V  Volume, m
3
; 

GREEK SYMBOLS 

ε  Phase holdup; 

µ  Phase viscosity, kg m
-1

 s
-1

; 

ν  Kinematic viscosity, m
2
 s

-1
;  

ρ  Phase density, kg m
-3

; 

σ  Standard of deviation ; 

σL  Surface tension of the liquid, Nm
-1

; 

υ  Molar volume, m
3
 kmol

-1
; 

SUBSCRIPTS 

A  Gas specie; 

B  Liquid specie; 

G  Gas phase; 

i  Initial condition or interface; 

L  Liquid phase; 
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O  Orifice; 

T whole column; 

DIMENSIONAL NUMBERS 

Bo  Bond number, LL

2

b /σρgd ; 

Re  Reynolds number,  gas  LLcG /µρDU , gas bubble LLbb /µρdU  ; 

 Sc  Schmidt number, ABLL D/ρµ ; 

Sh  Sherwood number, ABbL /Ddk ; 

We  Webber number, L

3

o

2

o

4

c

2

GG σd/NDUρ ; 

ABBREVIATIONS 

AARE  Absolute average relative error; 

ANN   Artificial neural network; 

BPNN  Back propagation neural network; 

GL  Gas-Liquid; 
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ABSTRACT 

Recovery of copper from actual spent etchant cupric chloride solution used in manufacturing of 

printed circuit board (PCB) containing 124 g/l Cu
+2

 ions concentration and 60 g/l hydrochloric acid was 

investigated in a batch mode jacketed tank. This tank was constructed with inner dimensions of 

19×10×15 cm
3
. Cylindrical rode-shape titanium was used as cathode, while two rectangular shaped 

graphite were used as anodes. The parameters studied were: current density (0.16-0.30 A/cm
2
), copper 

concentration in etchant solution (30-124 g/l) and the temperature (25-45o C). The highest current 

efficiency obtained was about 92% and the lowest power consumption achieved was about 2.7 W.h/g 

within the temperature range 25-35
o
 C. 
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INTRODUCTION 

Metals contaminations in waste streams are serious problem for several industries. .these streams 

containing a metal concentration higher than the acceptable limit set by law. Therefore, the treatment of 

contaminated streams is required in order to reduce the amount of metal to an acceptable level. The 

prospect of recovery has attracted interest among industries for environmental and economic reasons. 

Many previous studies have attempted to find reasonable ways to recover heavy metals. 

Electrochemical technology offers an efficient means of controlling pollution as it provides removing of 

heavy metals via redox reactions (Tenterio, 1978, Sioda, 1980 and Simonson, 1984). 

The aim of the present study was to establish an electrolytic deposition method for the recovery of 

copper (II) from spent etchant cupric chloride solution taken as waste stream from Electronic Industries 

Company by electrowinning.  

Operating conditions are very important to specify the typical deposition of the metal on the 

cathode surface (Parikh, 1974).  

Any condition that increases the rate of formation of nuclei tends to increase the number of 

crystals and the deposit will be fine grain spongy or as powder (Mantel, 1960). 

The following factors have been found to significantly affect the character of the metal (copper) 

deposits on the cathode: quantity and concentration of copper ion, current density, temperature, shape of 

the electrodes, and ratio of anode to cathode surface area (Parikh, 1974). 

 



Journal of Engineering Volume 13  June 2007        Number 2  
 

 

 1346

Materials and Experimental Method 

This study illustrates the laboratory design of electrowinning system as well as the experimental 

work to investigate the best conditions of copper recovery from spent etchant cupric chloride solution 

which was brought from Electronic Industries Company (EIC) / printed circuit boards' production factory.  

The test solution contains 124.5 g/l (124,500 ppm) copper ions and 60 g/l (60,000 ppm) 

hydrochloric acid (HCl). 

Experiments were studied in a batch mode using D.C. power supply (HP 6269B) operated at a 

constant current mode. 

A cylindrical rode-shaped cathode of titanium and two rectangular-shaped of graphite anodes 

were used. The ratio of anode to cathode surface area was 4.6. Cathodic and anodic potential recorded 

versus a saturated calomel electrode (SCE). 

One litter of solution was electrochemically treated for 30 minutes with mixer speed of 120 rpm in 

a jacketed tank with inner dimensions of 19×10×15 cm
3
 and outer dimensions of 21×12×17.5 cm

3
. 

Chiller was used to supply water to electrolytic cell through the tank’s jacket to maintain the electrolyte at 

a desired temperature. Figure 1 shows the schematic layout of the experimental apparatus. 

 

Fig. (1). Schematic layout of the electrical circuit 
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Results and Discussion 

This study concerned with simple formulas based on Faraday’s law of electrolysis and energy 

consumption for producing high purity copper metal from electrolytes through an aqueous electrolysis. 

The economics of electrowinning is not introduced since this is not the main subject in this study. 

 

g deposited, weight lTheoretica

g deposited, weight Total
100.%. ×=EC                                                         …1 

 

Figure 2 represent the relationship between cathodic current efficiency and Cu
+2

 ion concentration 

for different temperatures. 

It is clear that current efficiency decreases with increasing Cu+2 ion concentration when other 

conditions remained constant. Low ionic metal concentration is in general used for production of fine 

grained deposits (Mental, 1960). 
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Fig.( 2)., Current efficiency versus copper concentration at different temperatures and current density = 

0.20 Amp/cm
2
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Figure 3 shows the effect of increasing temperature on current efficiency at different current 

densities and copper ion concentration. 

Current efficiency decreases as temperature increases. Decreasing the temperature decreasing the 

ionic migration, diffusion and convection, which promote the rate of formation of crystal nuclies. 

Figure 4 shows that current efficiency decreases with increasing current density. Increasing the 

current density increases the capacity or output of product. 

Because of high current densities are employed, so that the concentration of the discharging ion 

declines considerably in the cathodic layer, the temperature increase may be ascribed, in this case to an 

appreciable increase of ohmic resistance of the cathodic layer following ion discharge, so part of current 

converts to heat which causes decreasing of current efficiency (Calusaru, 1979). 
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 Fig. (3)., Current efficiency versus temperature at different current densities and copper concentration= 

93 g/l 
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Fig.( 4)., Current efficiency versus current density at different copper concentrations and at 45
o
 C 

Power consumption is a vital to the economic justification of the method; it depends on current 

applied, cell voltage, time and weight of copper recovered. 

 

g

h V I
 n consumptioPower =                                                                                   …2 

 

Power consumption is electrical power required to deposit one gram of metallic ions as metal on 

the electrode in one hour Mantel, 1960). 

The cell potential is the sum of a number of components. 

 

saccell VVVV ++=                                                                                                  …3 

 

Potential drop across the solution (Vs) depends upon the conductivity of solution. As the 

conductivity of solution decreases, Vs increases due to the increasing in the resistance of solution and 

leads to increase in power consumption (Canning, 1970), which means increasing the cost of copper 

recovery. 
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Figure 5 shows at minimum Cu
+2

 ion concentration, higher power consumption is recorded 

because the solution of low conductivity causes an increase in the resistance of solution, accordingly the 

voltage of the cell increases leading to increase in power consumption. As Cu
+2

 ion increase above 80 g/l, 

power consumption raises because at high Cu
+2

 ion concentration current efficiency decreases leading to 

decrease the weight of copper recovered. 

Figure 6 shows that the higher the temperature the higher the power consumption because 

increasing the temperature decreases the weight of copper recovered due to a decrease in current 

efficiency compared with cell voltage. 
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Fig. (5)., Power consumption versus copper concentration at different temperatures and current density = 

0.16 Amp/cm
2
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Fig. (6)., Power consumption versus temperature at different current densities and copper concentration= 

93 g/l 

Figure 7 shows that power consumption increases as current density increases. Current density has 

the greatest effect because as current applied increases, cell voltage increases and also current efficiency 

decreases which leads to decrease in the weight of copper recovery, accordingly power consumption 

increases. 



Journal of Engineering Volume 13  June 2007        Number 2  
 

 

 1352

Current density, Amp/cm
2

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32

P
o

w
e

r 
c
o

n
s
u

m
p

ti
o

n
, 
W

/h
 g

2.5

3.0

3.5

4.0

4.5

5.0

Copper concentration= 124.5 g/l

Copper concentration= 93 g/l

Copper concentration= 62 g/l

Copper concentration= 31 g/l

Temperature= 25
o
 C

 

Fig. (7)., Power consumption versus current density at different copper concentrations and at 25
o
 C 

 

CONCLUSIONS 

1. Current efficiency increases with decreasing Cu
+2

 ion concentration for all current 

densities and temperatures. The highest current efficiency between 75 to 92 % and lowest 

power consumption is about 2.7 to 3.7 Watt. h/g, within 60-124 g/l Cu
+2

 ion concentration, 

were achieved under the conditions of 0.16 to 0.2 Amp./cm
2
 current density and 25-35

o
 C 

temperature. 

2. Although the highest current efficiency had been achieved at minimum Cu
+2

 ion 

concentration of 31 g/l, the operation was not economic, because of high power 

consumption.  
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DESIGN AND IMPLEMENTATION OF COMPUTER AIDED SYSTEM FOR 

QUALITY IMPROVEMENT INSPECTION AND TESTING FOR BOILER IN 

THERMAL ELECTRIC POWER STATION 

 

ABSTRACT 

There is a problem, in Iraq, due to the multitude of malfunction after the overall annual 

maintenance has been achieved, and that raises the cost of continuous repairs, one of the reasons of 

this problem, is the absence of planned testing and automation for testing devices, the second reason is 

the neglect of concentrating on a database, the third one is not following an integrated testing system 

for all parts, as well as, there are no documented reports for inspected parts. Most of various 

nondestructive inspection techniques have been achieved random selection steps. 

The lack of a documentation system leads to lack of historical information a bout failures parts 

of a boiler that affect inspection decision process. 

This paper summarizes Programmed system designing and computerized for internal 

inspection of boiler heatsurfaces (IIBHS) at Nassyriah power station as an example. 

 

KEYWORDS 

 Internal Inspection of Boiler, Inspection and test for boiler in thermal power station, Inspection 

of Heat surfaces in thermal power. 
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 INTRODUCTION 

There are a wide range of reasons that cause failures to occur in the critical parts of a boiler in 

TPS, the type and amount of inspection needed for repairs will be determined on an individual system 
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basis. The internal surfaces of a boiler in contact with water and steam which cause many problems 

lead to failures. Basic problems due to scale, generally the critical parts are those whose failure will 

directly affect the reliability of the boiler. The critical parts include: 

- Drum. 

- Furnace – tubes. 

- Supperheater – tubes. 

- Economizer tubes [M.N. Hoving and GLNakoneczy , 2000]. 

The main problems caused by boiler scales are: 

• Increase in tube wall temperature, hence, boiler tube ruptures. 

• Decrease in overall boiler efficiency, hence, increase in energy cost and loss of reliability [MoD. 

Majnouni and Arif E. jaffer, 2003] 

Ever part contains components which need an internal inspection system which includes. 

• Knowledge of environment of working conditions. 

• Historical, current, and manufacturing data for boiler. 

• Expected failure based on lessons learned from failure history. 

• Selection of nondestructive test (NDT) & destructive test (DT) methods of inspection[ASME Sec . 

V, 1980]. 

• Failure analysis and recovery with recommendation for correct actions. 

• determination of time frame consuming through the inspection process. 

• Documentation involving reports, and recordings for future analysis. 

EXPECTED FAILURES: 

A SYSTEM DESIGN FOR IIHSB: 

In general, system design means deciding what information is needed by the end user. It 

includes logical and physical design activities, and user’s interface, data, and process design activities. 

Also what procedure system requirements developed in the stages of system analysis[James A. 

Obrien, 1997]. 

A system design for IIHSB by analyzing in details the process which includes the activities of 

IIBHS and deals with all problems, then puts the systematic solution programmed by writing a set of 

instructions that cause a computer to perform a particular task. 

In the fig. (1) the system design concept is applied on IIBHS process in TPS of Nassirya in 

south of Iraq. 
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Fig. (1) 

A system design of IIBHS 

 

 

 

 

 

The system covers the main parts and components as in fig. (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (2) The tree diagram of BHS illustrates parts & components 
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FEATURES OF PARTS: 

Features of parts or components and the condition of operation define the factor which governs 

the designing of lists. 

• Drum shell is inspected in longitudinal and circumference tial welds. All welded attachment in the 

inner drum and the ends. 

• Furnace tubes on the lists are inspected in levels to consider the area near burners which has suffered 

from exposure to direct impinged fire-or dissimilar materials which defines the level of pipe. 

• Superheater has tubes made of alloy steel and subjected to creep failure, the lists include OD 

measurement to help the inspector if there is any failure caused by creep effect in the metal. 

• Economizer, external water tubes are subjected to damage of erosion on tube surface[David N. 

French, 1993]. 

 

DOCUMENTS IN SYSTEM DESIGNING: 

Two types of documents are used for designing a system of inspection and testing to cover 

principles and requirements of process. 

The first type is the information documents as specifications, design information and defect 

detection. 

The second type is the documents which express the process of (I & T) with decision making 

for each inspected part and components throughout lists such as: 

• List of internal inspection & testing. 

• List of internal inspection & testing (record) as in fig. (3). 

• List of reports of internal inspection & testing. 

• List of defects code. 

• List of recommendations. 

• List of analysis. 

• List of work time. 

In each part or component the list designed according to Russian and American which consider 

the feature of parts. 

In addition two types of documents required for the calculations which give the number to 

achieve the process, such as: 
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Calculations of criterion number to limit the dependent thickness or allowable thickness, 

number of hardness allowable and other mechanical properties, out diameter (OD) allowable 

calculations, and time standard for all activities in each part. 

 

 

 

 

 

 

 

 

 

 

Fig. (3) 

List of field record for drum 

 

A SYSTEM BUILDING STEPS: 

The steps to build the system are as follows: 

1. Identifies the data needed from a huge data pool which include: parts, material, dimensions, 

drawing specification, working hours… etc, then designs lists for all informations to all parts. 

2. Identifies the expected defects in all parts in a separate list. 

3. Selecting a dependent procedure of nondestructive test and destructive, and designing lists of 

inspection & test which include the list of mechanical test. 

4. Design lists of field (records) for all parts. 

5. Finding the criteria number and allowable limit of all parts, by calculation, as thickness or OD 

allowable. 

6. The lists of reports designing easy form to user which separates the rejected component, and fitting 

the lists of recommendations to repairs or treatments. 

7. Designs analysis lists after type defect classifications. 

8. Calculations of the standard time to estimate the performance of each activity are achieved. 

9. Setting the materials compositions for all parts to help the inspector to take a decision and setting 

microstructure in picture with limits of work hours to help the inspector to achieve the comparisons 

and take a decision for validity as in. 

10. Identifies the methods of water chemical analysis with designing the lists of chemical analysis. 

 



M.Y.Fattah                                                                                                                           Design and Implementation of Computer Aided System 

A.Abdul-Azal                                                                                                                       for Quality Improvement Inspection and  

H.T.Abid                                                                                                                             Testing for Boiler in Thermal Electric Power Station  

 

  (1359)

 

CALCULATIONS: 

The calculations involve equations to define the numbers needed by inspector after comparison 

to take a decision for repairing or changing or leaving the inspected part in the work. 

1. According to Russion standard the equation was used to define the allowable thickness 

of pipe for furnace, superheater, and economizer is [Dr.Markov , Dr.plastoy]: 

tmin = 
Pw × Dm 

200 ψ σact + Pw 

Where: 

tmin = minimum thickness allowable (mm). 

Pw = working pressure kgf / mm2. 

Dm = Nominal diameter (OD) mm. 

ψ = Welding coefficient. 

    = 1 for seamless pipe. 

σact = Ultimate stress at working temperature kgf / cm2. 

For example: 

The allowable thickness for water wall pipe of front wall of furnace: 

First step the material defines, the pipe made of 15XM. 

From the standards the minimum thickness is: 

tmin = 
155.5 × 60 

= 3.36 mm = 3.4 mm 
200 × 1 × 13.085 + 155.5 

This number means the criterion number to inspect the thickness of all pipes made of alloy 

steel 15XM, under working pressure 155.5 kgf / mm
2
 and out side diameter 60 mm, design thickness 

6mm – and accepted thickness number after working hours > 3.4 mm. 

2. According to American standard the equation was used to define the criterion number 

of (OD) in sperheater, which gives the indication about thermal effect on the metal (creep 

failure)[ASME, 1971]. 

OD criterion = 
OD original × 3.5 

100 + OD 

Where 

OD criterion = out side diameter of pipe. 

OD original = out side diameter of pipe in design condition. 
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Then OD allowable < OD criterion 

For example: 

The pipe of platen superheater which is made of alloy steel      (12X IMΦ) with dimension of 

OD = 42 mm. 

OD criterion = 
42 × 3.5 

= 43.47 mm 
100 + 42 

 

OD allowable < 43.47 mm 

3. Stresses in the drum shell calculated from hardness number of test. 

By measuring hardness Brinel number (HB) (used portable digital hardness tester) then 

calculate σ number from equation: 

Then σ allowable > 50 kgf / mm2 accepted. 

4. According to Japanes standard the equation which gives the indication about the scale 

in the water of boiler[JIS, 1966]: 

W2 – W1 < 400 g / mm2 

Where 

W2 = the weight of pipe with scale. 

W1 = the weight of pipe without scale (after washing). 

Then (w2 – W1) allowable < 400g / mm2 

This test helps the inspector to give his decision about washing the boiler. 

5. Time standard calculation: 

Time consumer in all types of (I & T) NDT and DT calculates by means of data numbers after 

analysis in normal distributed curve. 

The data numbers divided to classes [G.M. Clarke and D. Cooke , 1978]. 

Length of class = 
HV – LV 

6 

Where 

HV – LV = range 

HV = high value number in data 

LV = Low value number in data 

6 = number of classes 









=

3.5or  3

HB
  σ
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then apply the equation. 

Where 

f= frequency (data numbers) 

X = mean value 

Where S standard deviation 

 

The analysis covers all type of DT & NDT like ULT, RL, MPT, PT… etc. 

For example ultrasonic data submitted to analysis as below 

Range = HV – LV 

= 5.33 – 4.88 

= 0.45 

Length of class = 
Range 

= 
0.45 

= 0.075 
Number of classes 6 

 

No. class Freq. mid point X (X)
2
 fx fx

2
 

1. 4.88-4.4955 3 4.91 24.10 14.73 72.32 

2. 4.956-5.031 5 4.99 24.90 24.95 124.50 

3. 5.032-5.107 7 5.06 25.60 35.42 179.22 

4. 5.108-5.183 6 5.14 26.41 30.84 158.51 

5. 5.184-5.259 5 5.21 27.14 26.05 135.72 

6. 5.26-5.335 4 5.29 27.98 21.16 111.93 

  30   153.15 782.20 

 

 

= 
153.15 

= 5.10 
30 

 

∑
∑
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= 0.25165 

 

 IMPLEMENTATION (DBMS) COMPUTER AIDED OF IIBHS IN TPS 

The software involves three basic activities: 

1. Updating and maintaining common data base to reflect new events requiring changes to an 

organizations record. 

2. Providing information needed for end users application by using application programs that share the 

data in common databases. This sharing of data supported by the common software interface 

provided by (DBMS) package. 

Thus, end users and programmers do not have to know where or how data are physically stored. 

3. Providing an inquiry / response and reporting capability through a DBMS package, so that 

endurance can easily interrogate data bases, generate reports, and receive quick responses to their 

special requests for information. 

The software of a database management system (DBMS) is implemented to record and 

supervise the IIBHS in Al- Nassryiah power station in south of Iraq. Since all four units of power 

station, have the same type of boiler then the options in this system applies for all four boiler. 

 

Computer specification for system requirements: 

Central process unit (CPU): Pentium III 633 MHz or higher. 

RAM memory: 128 MB, 256 MB recommended. 

Hard disk space: 200 MB 

Operating system: windows XP. 

For printing a laser with A4 paper size is recommended. 

 

As in fig. (8) these options are: 

1. Boiler specifications: displays the boiler specifications window. 

2. Drum: displays the drum list. 

3. Furnace: displays the furnace list. 

4. Super heater: displays the super heater list. 

5. Economizer: displays the economizer list. 

6. Materials: displays the window containing the materials used in the boiler and there chemical 

composition. 

7. Help: to execute this help file. 

8. Exit: to end the system and return to windows. 
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After having a good look on the existing option with high + light which moves to choose any 

required one. 

If the user selects the drum second menu will appear which contains four options, then if the 

user selects list option the third menu will appear etc. for example the list in fig. (3) in the computer 

will appear as in fig (9-a) fig. (9-b), and fig. (9-c), also the list of report in fig. (4) it will appear by the 

window of computer as in fig. (10). 
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                                                            Fig(8) 

 

All the system will display as window in the computer to achieve the activities of IIBHS and 

give the user results, and recommendations in a simple method. 

 

                                                                    Fig (9) 

 

 

 

 

 



M.Y.Fattah                                                                                                                           Design and Implementation of Computer Aided System 

A.Abdul-Azal                                                                                                                       for Quality Improvement Inspection and  

H.T.Abid                                                                                                                             Testing for Boiler in Thermal Electric Power Station  

 

  (1365)

 

CONCLUSION: 

By using the computerized system, the efforts and time will be saved, also the successful 

results which introduce by implementing the system gives the benefits as follows: 

- Standardization of methods, procedures, for selection the NDT and DT. 

- Reducing of paper work and form. 

- Providing database from a huge data in a short time. 

- Better documentation by recording the stages of inspection and reports. 

- Historical data is given with time which assists both manager and inspection staff. 

- Enlarging the capabilities of analysis. 

- Avoiding the undeliberating errors. 

- Training become more easy by using the programmed system. 

The recommendations listed in this system are minimum guideline for inspecting the critical 

components of the boiler island. Based on problems encountered during the day-to-day boiler 

operation, additional inspections may be recommended. 

The steps in this system will help to know the amount, type and specific location of inspection 

performed at any outage, either planned or forced. 
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ABSTRACT: 

This paper introduce a new method for using a systolic array to perform the one, and two 

dimension discrete wavelet transform (1-D DWT, and 2-D DWT).  

 The 1-D needs only a semi-systolic array for its realization. However, it was found that the 2-

D method needs the combination of two types of semi-systolic array into one systolic array to achieve 

its implementation.  
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1-D DWT, 2-D DWT , Semi-systolic array, and Systolic array. 

 

INTRODUCTION  

One of the signal-processing problems is the efficient implementation in VLSI of the discrete 

wavelet transform (DWT). The DWT is important in many applications such as spectral analysis, 

digital filtering, image processing . . . etc. There is a much interest in two dimension discrete wavelet 

transform (2-D DWT), to gain a better understanding for pattern analysis [Martin 1999]. 

For VLSI implementation, systolic arrays are attractive because they are constructed with a 

repetitive array of identical cells. The use of identical cells simplifies the design process. Further, if 

the interconnection between cells can be restricted to the nearest neighbor connections (i.e., only 

adjacent cells communicate with each other), high speed is possible [Swartzlander 1987]. 

The DWT is better suited to realization with a systolic array, due to the high density, and high 

speed processors of the systolic array that result from the short and systematic wire routing and 

concurrency [Lee 1992, O'Brien 1989]. 

This paper is organized as follows: Section II presents a computation of 1-D DWT and 2-D 

DWT. Section III describes semi-systolic array for matrix multiplication. Section IV presents a 

systolic array for computing 1-D DWT, and 2-D DWT. Section V presents conclusions.  
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COMPUTATION OF DWT: 
The structure of a one dimensional DWT is shown in fig. (1). X(n) is the 1-D input signal. H(n) 

and g(n) are the analysis lowpass and high pass filters which, split the input signal into two subbands: 

lowpass and highpass. The lowpass and highpass subbands are then downampled generating XL(n) 

and XH(n) respectively [Goswami 1999]. The 1-D DWT can compute as follows: 

1. Checking input dimensions: input vector should be of length N, where N must be power of 

two. 

2. Construct a transformation matrix T: using transformation such as Haarr, or Daubechies Db4 

[Burrus 1998]. As shown below for N=4: 
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3. Transformation of input vector: which can be done by multiplying the N×N constructed 

transformation matrix by the N×1 input vector. 

     11 . ××× = NNNN XTY                                                             [1]                               

There are two main types of methods for computing DWT for 2-D signals, which are separable 

and non-separable algorithms. Separable methods simply work on each dimension in series. The 

typical approach is to process each of the rows in order and then process each column of the result. 

Non-separable methods work in both signal dimensions at the same time [Strela 1996]. Because 

the non-separable method can save time and computation, it will be use here.  

     The 2-D DWT can compute using non-separable method as follows: 

1. Checking input dimensions: input matrix, X, should be of length N×N, where N must be 

power of two. 

2. For an N×N matrix input 2-D signal, X construct an N×N transformation matrix, T, using Haarr, 

or Daubechies Db4 [Burrus 1998]. 

3. Apply transformation by multiplying the transformation matrix by the input matrix by the 

transpose of the transformation matrix. 
T

NNNNNNNN TXTY ×××× = ..                                                      [2]         
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This multiplication of the three matrices result in the final discrete wavelet 

transformed matrix. 

 

 

 

 

 

 

 

 

 
 

 

 SEMI-SYSTOLIC ARRAY FOR MATRIX MULTIPLICATION: 

Since matrix multiplication is the basic operation for the DWT it will describe here. 

Our approach is based on systolic arrays for matrix multiplication. Kung [Kung 1988] has 

identified two types of semi-systolic arrays for the multiplication of two N × N matrices. An 

array is semi-systolic if the output data is not produced in the boundary cells of the array (type 

1) or if the input data has to be preloaded into the array (type 2). 

The type 1 array and the type 2 array and their cell structure are shown for N=4 on 

fig.(2)  for matrix multiplication C=AB. Where Hin, Hout, Vin, and Vout represent the horizontal 

input, the horizontal output, the vertical input, and the vertical output respectively. Rij is a 

value saved in a register of each semi-systolic cell. 

In the type 1 array shown in fig. (2 a). Each semi-systolic cell perform a multiply-

accumulator operation. Where the horizontal and vertical inputs are are multiplied and added 

to the register in semi-systolic cell. In N cycles, each semi-systolic cell computes an inner 

product of row of A and column of B. Here type 1 computation is done as follows from type 1 

array in fig. (2 a): 

 

inout HH ←  

inout VV ←  

ininijij VHRR +←  

The computational sequence of this array is shown in table (1 a), where yx ←  

indicates that the value of x is replaced by the value of y. this array is semi-systolic since the 

output data is produced throughout the array and not at in the boundary cells. This requires 

overhead for the output to be shifted out of the array. 

In the type 2 semi-systolic array shown in fig. (2 b), to compute C=AB, the components of 

matrix B are preloaded into register in the semi-systolic cells, and matrix A stream into the 

array. Each cell multiplies the horizontal input times the register value and adds this to the 

vertical input to produce the vertical output. The inner product of a row of input matrix A and 

a column of the array (a column of matrix B) is computed in N cycles. Type 2 semi-systolic 

computation is defined as follows from the type 2 array in fig. (2 b): 

inout HH ←  

inijinout HRVV +←  

  

)(nh  

)(ng  

2 

2 

)(nh
)

 

)(ng
)

 

2 

2 

X(n) X(n) 

XL(n) 

XH(n

) 

Analysis Synthesis 

Fig. (1): Analysis and synthesis stages of a 1-D 

DWT 
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The computational sequence of this array is given in table (1 b). The value of Cij(i=1, 2, 3, 4) is 

generated by semi-systolic cell (4, j) for j=1, 2, 3, 4. 

Inputs for type 1 matrix multiplication array are stream inputs, whereas one of the 

inputs of the type 2 matrix multiplication array is preloaded input. On the other hand, in the 

type 1 matrix multiplication array, each element of matrix C is saved in a semi-systolic cell, 

where as in type 2 matrix multiplication array, each element of matrix C is generated in the 

bottom boundary semi-systolic cell's of the array as stream outputs. 
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ininijij VHRR +←  →inH  outH→  

↓

inV
 

inout VV ←

↓
 

 

ijR  →inH  outH→  

↓

inV
 

ijininout RHVV +←

↓                
 

b11 a41 a31 a21 a11 

a42 a32 a22 a12 0 

a43 a33 a23 a13   0   0 

a44 a34 a24 a14   0    0   0 

   0 

   0 
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c24 

c14 

b12 b13 b14 

b21 b22 b23 b42

b31 b32 b33 b34 

b41 b42 b43 b44 

Fig. (2): Semi-systolic arrays for matrix multiplication.  

Table 1 

Coputational sequences for type 1 and type 2 semi-systolic arrays. (a) for the type 1 semi-

systolic array. (b) for the type 2 semi-systolic array. 

(a) Type 1 array 

(b) Type 2 array. 
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 cell(1,1) cell(2,1) cell(3,1) cell(4,1) 

1 111111 baR ←     

2 21121111 baRR +←  112112 baR ←    

3 31131111 baRR +←  21222121 baRR +←  113131 baR ←   

4 41141111 baRR +←  31232121 baRR +←  21323131 baRR +←  114141 baR ←  

5  41242121 baRR +←  31333131 baRR +←  21424114 baRR +←  

6   41343131 baRR +←  31434114 baRR +←  

7    41444114 baRR +←  

 

 

 cell(1,1) cell(2,1) cell(3,1) cell(4,1) 

1 1111baVout ←     

2 1121baVout ←  2112baVV inout +←    

3 1131baVout ←  2122baVV inout +←  3113baVV inout +←   

4 1141baVout ←  2132baVV inout +←  3123baVV inout +←  4114baVV inout +←  

5  2142baVV inout +←  3133baVV inout +←  4124baVV inout +←  

6   3143baVV inout +←  4134baVV inout +←  

7    4144baVV inout +←  

 

 
COMPUTATION OF DWT USING SYSTOLIC ARRAY: 

The 1-D DWT can be implement by using type 2 semi-systolic array. Where Rij will content 

the elements of the transformation matrix T after transposition (Which is either Haar, or Db4 

transformation matrix). X is the input signal. As shown in fig. (3). Which implement equation 1. 

Where Fig. (3 a) implement this equation by using the Haar transformation. While Fig. (3 b) 

implement this equation by using the Db4 transformation.  
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Fig. (3, a): Implementation of 1-D DWT  using Haar.  

Fig. (3): Implementation of 1-D DWT using type 2 semi-systolic array. 
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Fig. (3, b): The implementation of 1-D DWT  using Db4.  
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Equation 2, which represent the 2-D DWT can be implemented by using type 1, and type 2 

semi-systolic array. As shown in fig. (4), which represent a fully systolic array. Where first a type 1 

semi-systolic array is used to implement the first part of equation 2 (Z=T.X), and store it inside it. 

Then type 2 is used to implement the second part of equation 2 (Y=Z.T
T
), but with some change as 

shown below: 

 ijininout RVH +=H   instead of  ijininout RHVV +=                

   inout VV =              instead of              inout HH =  

  
Note that due the rearrangement of T in type 2, the result obtained in reverse order. The overall 

fully systolic array is shown in fig. (4 c). 
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Fig. (4,  a): Represent type 1 semi-systolic array to implement Z=T.X 

 

ininijij VHRR +←  

inout VV ←  

inout HH ←  

 



w.a.mohmoud                                                                                                       Systolic Array for Realization of Discrete Wavelet  

A.S.Hadi 

 

 

 1377

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z11 Z12 Z13 Z14 

Z21 Z22 Z23 Z24

Z31 Z32 Z33 Z34 

Z41 Z42 Z43 Z44 

The output is in 

reverse order 

                                -h0 

                        h1      0 

         0             0        h1 

0      -h0            h0      0 

h1      0              0 

0         h1 

 h0       

Represent type 2 semi-

systolic array 

Y=Z.T
T 

ijininout RVH +=H  

inout VV =  

Y14  Y13  Y12  Y11 

 

Y24  Y23  Y22  Y21 

 

Y34  Y33  Y32  Y31 

 

Y44  Y43  Y42  Y41 

 

Fig. (4, b): Represents type 2 semi-systolic array to implement Y=Z.T
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. 
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Fig. (4,  c): The overall fully systolic array, to implement Y=T.X.T
T
. 

Fig. (4): The implementation of 2-D DWT using systolic array with Haar Transformation. 
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 CONCLUSION 

This paper presents a systolic array realization of the 1-D DWT, and 2-D DWT. The 1-D needs 

only a semi-systolic array for its realization, which need a preloading of input data. While the 2-D use 

a regular array of simple processors that operate in the two semi-systolic manners to produce a fully 

systolic system. The resulting systolic array accepts stream of input data without any preloading.  

This open the way for further study of image and speech processing as well as in other DSP 

applications that based on Wavelet transform. 
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ABSTRACT 

     This research pertains to expand the formulation and applicability of using confinement and 

expansion due to Poisson’s ratio models for three dimensional non-linear finite element analysis of 

reinforced concrete members. A plasticity based model that acknowledges the asymmetric response 

of reinforced concrete under multiaxial stress conditions is used to account for the strength 

improvement under conditions of triaxial compression. Complex behavior of concrete such as 

compression softening and tension softening are incorporated to simulate concrete behavior.  

DIANA software is used for finite element analysis with the inclusion of confinement and 

expansion effects. The concept of material pre-strains is extended to accommodate modeling of the 

Poison’s ratio effect. The applicability of the suggested confinement and expansion models are 

verified by comparing the results of Kupfer and Vecchio – Collins tests on shear panels with that 

obtained from DIANA software. These comparisons illustrate the ability of the confinement and 

expansion models to obtain the response of reinforced concrete members subjected to multiaxial 

stress conditions. 

 

KEYWORDS 

 Compressive behavior, Confined concrete model, DIANA software, Expansion                      

model, Finite element. 
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INTRODUCTION 

     In concrete constitutive modeling, a number of different approaches have been used to calculate 

the material stiffness matrix. Traditionally, constitutive models for concrete have concentrated on 

reproducing the experimental observed nonlinear response of reinforced concrete specimens. Many 

constitutive models for multiaxial stress states are based on modifications to the uniaxial stress – 
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strain response. Concrete strength and stiffness are sensitive to multiaxial stress conditions. 

Ultimate strength and ductility are known to be significantly improved in the presence of lateral 

compressive stress which inhibits the propagation of microcracks (Figure (1)). Some modifications 

are required to extend the cracked concrete theory from two to three dimensions while a model is 

needed for material subjected to triaxial compressive stresses. To describe the response of 

reinforced concrete, models are required for strength degradation due to cracking, strength 

enhancement because of confinement and expansion due to effect of Poisson’s ratio, pre and post-

peak stress-strain response in tension and compression. 

 
Fig (1): Effect of confinement on strength and ductility of concrete [Chen 1982]. 

 

STRESS - STRAIN CURVES FOR COMPRESSIVE RESPONSE 

     The constitutive equations for multiaxial stress state are based on modifications to the concrete 

uniaxial stress – strain curve. The Hognestad parabola describes the stress – strain response of a 

normal strength cylinder loaded in uniaxial compression. The parabolic relationship to determine 

the compressive stress fc3 corresponding to the compressive principal strain εc3 (Vecchio and Collins 

1982) is: 
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where fp  and εp are the peak stress and the strain at peak stress, respectively. The strain at peak 

stress is calculated as 2 cf ′ /Ec where Ec is the initial slope to the parabola. For the case of uniaxial 

compression, the peak stress will be the cylinder strength cf ′  which occurs at the strain εo   

     The uniaxial stress – strain response of high strength concrete is more linear in the ascending 

branch and the descending branch drops more sharply as shown in Figure (2). Therefore, the 

Hoghnestad parabola does not provide a good representation of the response of high strength 



Journal of Engineering  Volume 13  June 2007         Number 2  
 

  

  1382

concrete. Also, in low strength concrete ( cf ′ < 20 MPa), the Hognestad parabola tends to 

underestimate stresses at intermediate levels (Vecchio and Collins 1993). Thus, various alternatives 

were considered. It was found that the Thorenfeldt et al. (1987) model resulted in a good correlation 

for the full range of concrete strength represented in the database. The Thorenfeldt base curve later 

was calibrated by Collins and Porasz (1989) and as follows: 

( )nk
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c
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n
ff

εεε

ε
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..

3

3

3
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=                                                                                                (2) 

where n is  given by: 
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and k equals 1 for ascending branch, and 
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for the descending branch ( where cf ′   is in MPa ). For this curve, the strain at peak stress under 

uniaxial compression is estimated as: 
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The effect of the cylinder strength on the shape of this curve is shown in Figure (2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (2): Effect of cf ′′′′  on the shape of curve given by Eq. (2) (Collins and Porasz 1989). 

 

CONFINED CONCRETE MODEL 

    Lateral confining stresses increase the strength, stiffness and strain at peak stress of concrete 

cylinders. The strength enhancement is modeled by modifying the peak stress of the base curve. 

The failure surface proposed by Hsieh et al. (1979) is: 
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is used to find the stresses required in the major compressive direction to cause failure,  fc3f  , in the 

presence of the stresses fc1 and fc2. The invariants J2 and I1 are defined in terms of the stress fci in 

concrete according to: 
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6

1
J −+−+−=                                                                          (7) 

 3211 ccc fffI ++=                                                                                                                             (8) 
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and  fc1 is the tensile principal stress in concrete.  

The multipliers in this equation are curve fitting factors chosen to represent the results of a number 

of tests (Chen 1982). The stress fc3f  is used as the peak stress of the base curve and a peak stress 

factor , σK  is defined as: 

 
c
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f

f
K

′
=

3

σ                                                                                                                                         (9) 

while experimental evidence suggests the same factor can be applied to find the peak stress and the 

corresponding peak strain in cracked concrete, different factors must be applied to cf ′ and oε  for 

confined concrete. The peak strain increases much more rapidly than the peak stress as confining 

pressure is increased. To relate the peak stress factor and the strain at peak stress factor, εK , a two 

part expression is implemented as shown in Figure (3). For low peak stress ratios ( σK < 3), a fit to 

the data of Kupfer et al. (1969) is used. 

 1K718.13K42.24K313.13K819.2K2036.0K
234

++−+−= σσσσσε                                 (10) 

And for peak stress ratios, the expression is: 

 εK  = 5 σK - 4                                                                                                                                 (11) 

The coordinates of the apex of the base curve become 

 cp fKf ′⋅= σ                                                                                                                                    (12) 
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Fig (3): Peak stress and corresponding peak strain in confined concrete. 
  

     The ratio fc3 / fc3f  is a measure of the degree of nonlinearity. When this value is low, the strain at 

peak stress is close to σK  oε . At ultimate strength level, the strain at peak stress becomes closer to 

εK oε . The modified stress – strain curve is then used to determine all three concrete stresses from 

the corresponding principal strains. Increased ductility is evident when concrete is confined. To 

simulate the descending branch given in Figure (4) of the stress – strain curve of confined concrete, 

a liberal modification was made to modify Kent – Park model (Scott et. al. 1982). The descending 

branch is given by: 

[ ( ) ] pp3cmp3c f2.0Z1ff −≤−+−= εε                                                                                 (14) 

where 

Eq. (11) 

Eq. (10) 
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I1 is the first stress invariants, fci is the current stress in the principal direction under consideration, 

and εo and  εp  are negative quantities. This equation is in S.I. units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4): Compressive stress-strain model for confined concrete. 

 

     Lateral expansion increases rapidly near the peak stress as shown in Figure (5). At compressive 

stresses close to failure, the Poisson’s ratio can exceed 0.5 (i.e., volume increasing). This behavior 

is modeled by a fit to the Kupfer et al. (1969) as follows: 
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where υo ratio is the initial Poisson’s ratio. This relationship implies that only three Poisson’s ratios 

are independent since: 
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Fig (5): Increase in Poisson’s ratio close to peak stress. 

 

Eq. (15) 

Eq. (16) 
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For uncracked concrete in tension, the initial Poisson’s ratio is used. Upon cracking in the tensile 

principal direction, expansion normal to this direction is set to zero only. (i.e., υ21 = υ31 = 0, but all 

other Poisson’s ratio are nonzero). If the intermediate principal direction also cracks, υ12 and υ32 are 

set equal to zero. All Poisson’s ratios are zero if three orthogonal tensile failures occur (i.e., cracked 

concrete case). 

    In the current work, concrete cracking is based on the smeared model approach with plasticity 

model. It is simulated by an elastic-plastic work hardening response (based on Thorenfeldt base 

curve) followed by a perfectly plastic plateau which is terminated at the onset of crushing. 

 

EXPANSION EFFECT 

      The Poisson effect of a material determines the lateral displacement of a specimen subjected to 

a uniaxial tensile or compressive loading. If these displacements are constrained, a passive lateral 

confinement will act on the specimen. This effect is considered important in a three-dimensional 

modeling of reinforced concrete structures. This effect is modeled through a pre-strain concept in 

which the lateral expansion effects are accounted for with an additional external loading on the 

structure with 2-dimensional nature (Vecchio 1992). Cracked concrete treated using the smeared 

crack approach is inherently modeled as an orthotropic material. In confined concrete, the adoption 

of an orthotropic model allows for the consideration of anisotropic behavior close ultimate. The 

three dimensional orthotropic material stiffness matrix can be written in the principal directions 

(Weaver and Johnston 1984) as: 
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where Ei  is the modulus of elasticity in the i-direction and the Poisson’s ratio νij is the component of 

strain in the i-direction due to a stress in the j-direction and  

 2312311332211331122123321 ννννννννννννφ −−−−−=                                                                   (19) 

The three shear moduli are given by: 
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To maintain symmetry in the stiffness matrix, the following three conditions must be satisfied: 

 212121 EE νν =                                                                                                                                 (23) 

 323232 EE νν =                                                                                                              (24) 

 313131 EE νν =                                                                                                                                 (25) 

     In cracked concrete, most orthotropic material descriptions (i.e., smeared crack models) have 

assumed that the Poisson’s ratio effect is negligible. All of diagonal terms in Eq. (18) become zero 

since the six Poisson’s ratios are neglected, i.e., νij = 0. This assumption is relatively good for many 

cases, but for the case in which the tensile strains in cracked concrete are relatively small, the lateral 
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expansion of concrete arising from Poisson’s ratio effect can be predicted in this situation. Also, in 

triaxial compressive stress conditions the Poisson’s ratio effect cannot be neglected. 

    This concept is also applied to the nonlinear material model implemented in DIANA software. 

Provisions were included to model pre-strains arising from strain offset effects such as pre-stressing 

of reinforcement, shrinkage or expansion of concrete and thermal expansion of either concrete or 

reinforcement. For concrete, a pre-strain vector is { }o

cε  defined relative to the global x, y, and z 

system as: 

 { } { }To

cz

o

cy

o
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o
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c γγγεεεε =                                                                                     (26) 

accounting for all nonstress related straining. A similar vector developed for the reinforcement pre-

strains. An equivalent force approach was then used to incorporate the pre-strain effects. From the 

known pre-strains, free nodal displacements { }cr  and { }sr  were calculated for the concrete and 

steel, respectively: 

 { } { }∫= dVr
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cc ε                                                                                                                            (27) 

 { } { }∫= dVr
o

cs ε                                                                                                           (28) 

The equivalent nodal loads due to the pre-strains, { }*F   can be calculated as: 
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where [ ]ck and [ ]
isk are the element stiffness matrices evaluated separately for the concrete and 

each reinforcement component. These equivalent nodal forces due to the pre-strains are then added 

to the externally applied nodal forces to determine the total nodal forces. The total nodal load vector 

is updated on each iteration since the equivalent nodal forces depend on the component stiffness. 

This algorithm will be modified here to include the expansion effect due to Poisson’s ratio effect. 

The expansion strains in the principal directions are written as: 
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The expansion strains are then transformed to the global x, y, and z axes according to: 

 { } [ ] { }o

c

o

c T ρεε =                                                                                                                            (34) 

where [T] is the transformation matrix that defines the orientation of the principal axes. Equivalent 

nodal loads are calculated as outlined in Eq. (29) to include all straining arising from expansion in 

the right hand side of Eq.  (35). 

 [ ]{ } { }FrK =                                                                                                                                    (35) 

 All of the expansion strains are modeled through the pre-strain concept so the material stiffness 

matrix then includes diagonal terms only. 
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where Ec1, Ec2   and Ec3 are the tangent modulus. 

 
1

1c
1c

f
E

ε
=                                                                                                                                         (37) 

 
2

2c
2c

f
E

ε
=                                                                                                                                        (38) 

 
3

3c
3c

f
E

ε
=                                                                                                                                        (39) 

and the shear modulus are given by: 
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The principal strains used in Eqs. (37 – 39) are that part of strains occurred due to direct stress. That 

is, any nonstress-related strains are first subtracted from the total strains before calculating the 

principal values. The pre-strains approach is valid for both uncracked and cracked concrete. An 

iterative procedure is required for finite element analysis based on this approach. 

     

CRACKED CONCRETE MODEL 

     Cracked reinforced concrete is treated as an orthotropic nonlinear material based on a smeared 

rotating crack model. In cracked concrete, large strains perpendicular to the principal compressive 

direction reduce the concrete compressive strength. Thus, the compressive stress fc3 is a function of 

εc1 in addition to εc3. The compression softening factor, λ, is given by: 
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where εc1 is the tensile principal strain. 

     The above compression softening relationship was derived by (Vecchio and Collins   1982) from 

tests on reinforced concrete panels of normal strength concrete. Also, high strength concrete is 

thought to exhibit a more pronounced compression softening effect due to smoother fracture planes. 

The compression softening factor was updated (Vecchio and Collins 1993) based on statistical 

evaluations of data, the strength and strain softening model shown in Figure (6) is referred as Model 

A and takes the form: 
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 cf f1825.0K ′=                                                                                                                            (46) 

and  cf ′   is expressed in MPa. The Ks   factor   accounts for the effect of the transverse straining and 

Kf represents the influence of the concrete cylinder strength. The peak stress and strain of the base 

curve are modified to account for the effect. 

 fp  =  λ .  cf ′                                                                                                                                      (47) 

 εp   =  λ . εo                                                                                                                                       (48) 

 After that, only slightly weaker correlation was obtained by using a strength only softening model 

as a function of εc1. The optimal form attained, referred to as model B (Vecchio and Collins 1993) 

which is adopted in this research and illustrated in Figures (7) and (8), is:  
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Fig (6): Model A for compression softening (Vecchio and Collins 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (7): Model B for compression softening (Vecchio and Collins 1993). 
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Fig (8): Model B for compression softening due to lateral cracking  

                                        , Eq. (49) (Vecchio and Collins 1993). 

 

 

 

    In tension, a strain softening model is used by adopting the behavior which is based on a bilinear 

stress-strain relationship (Hillerborg et al. 1976) and as shown in Figure (9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (9): Hillerborg et al strain softening model (Hillerborg et al. 1976) 

 

    The shear stiffness at a cracked sampling point becomes progressively smaller as the crack 

widens. So the shear modulus is reduced to β G. Before cracking, the factor β is set equal to 1.0. 

When the crack is sufficiently opened, a constant value is assigned to β, to account for the dowel 

action as shown in Figure (10). The following relations are used to account for the shear retention 

effect (Al-Shaarbaf 1990). 
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where γ1 , γ2  and γ3  are the shear retention parameters. γ1 represents the rate of decay of shear 

stiffness as the crack widens, γ2 represents the sudden loss in the shear stiffness at the onest of 

cracking, and γ3 represents the residual shear stiffness due to the dowel action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (10):  Shear retention model for concrete (Al-Shaarbaf 1990). 

 

MODELING OF REINFORCEMENT  

      Modeling of reinforcing steel in connection with the finite element analysis of reinforced 

concrete members is much simpler than the modeling of concrete. The steel bars are long and 

relatively slender, and therefore, they can be assumed to transmit axial force only. In the current 

work, the embedded reinforcement model with an elastic-linear work hardening model is adopted to 

simulate the uniaxial stress-strain behavior of reinforcing steel bars, Figure (11). 

 

 

 

 

 

 

 

 

 

 

 

Fig (11): Stress-strain relationship of reinforcing steel bars (Al-Shaarbaf 1990). 

 

FORMULATION OF FINITE ELEMENT ANALYSIS 

    In the present study, the computer software, DIANA V9.0 (Witte and Kikstra, 2002), has been 

adopted to carry out the numerical analysis. The main objective of the study is to analyze some 

experimental cases to verify the use of both the confining and expansion models and as follows: 

 

A - CONCRETE IDEALIZATION 

     The 20-node hexahedral brick element is used in the current study to model the concrete. Each 

node of this element has three translation degrees of freedom u, v and w in the x, y and z directions 

respectively as shown in Figure (12) (Al-Shaarbaf 1990). The element employs the standard shape 

functions to define the displacement field (Dawe 1984). The displacements of the brick element are 

given by: 
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B - REINFORCING BAR IDEALIZATION 

    The reinforcing bars are idealized as axial members embedded within the brick elements 

(Zeinkiwecz 1977). Reinforcing bars are assumed to be capable of transmitting axial force only. 

The stiffness matrix of steel bars is added to that of the concrete to obtain the global stiffness matrix 

of the brick element. The shape functions of the brick element can be used to represent the 

displacements of the embedded bar (Al-Shaarbaf 1990). For example, 
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where a bar is considered lying parallel to the local coordinate axis ξ  with cη=η  and cζ=ζ  

(constant), Figure (13). 
 

 

 

 

 

 

 

 

 

 

Fig (13): Representation of embedded reinforcement. 

 

 

 

Fig (12): 20-Nodded isoparametric brick element 
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C- General Nonlinear Solution Procedure 

    The incremental-iterative method is the most common technique used for solving nonlinear 

structural equations. Loading on the studied specimens is induced by means of a prescribed 

displacement at the point load. The numerical integration has been conducted by using the 27 points 

Gaussian rule (3x3x3).  

 

VERIFICATION WITH EXPERIMENTAL RESULTS 

A – Confined Concrete Model 

     The data collected by Kupfer, Hilsdorf and Rusch (Kupfer et. al 1969) from a series of plain 

concrete specimens tested under different combinations of in plane biaxial loading were selected to 

establish the ability of proposed model for confined concrete under multiaxial compressive stresses. 

The 200 mm square and 50 mm thick specimens subjected to biaxial compression were selected. 

The plain concrete had cylinder strength of 18.7 MPa. Further concrete properties are shown in 

Table (1). Analysis was carried out using DIANA for lateral confining stress equal to zero (i.e., 

uniaxial compression), σ3 / 2 and σ3 (i.e., equal biaxial compression). The ratio of lateral to axial 

stress, σ2 / σ3 was held constant throughout the test. The out of plane stress σ1 was zero in all three 

tests. Also another analysis was made but without including the effect of confinement. For biaxial 

compression, the volumetric strain (i.e., ∆V/V =.ε1+ ε2+ ε3) for various stress ratios (fc3/fc) are 

shown in Figure (14). The response, including the peak stress and strain at peak stress, was well 

duplicated in all cases. Also, the expansion was realistically reflected even near ultimate. It was 

noted that confined concrete model was capable of adequately obtaining the strength and 

deformation response under multiaxial stresses of the plain concrete.  

 

B – Expansion Model 

    Two of Vecchio – Collins shear panels (Vecchio 1982) were selected to show the improvement 

in modeling that can realize when the Poisson’s ratio effect is included in the cracked concrete 

theory. The normal strength panels, PV23 and PV25, were 890mm square by 70mm thick and 

symmetrically reinforced with two layers of wire mesh of 50mm grid. A clear cover of 6 mm was 

provided. They were equally reinforced in the longitudinal and transverse directions (ρx = ρy = 

1.875%, see Table (1)) and were loaded in shear and equal biaxial compression. No reinforcement 

yielded in either specimen before failure by crushing of the concrete. The improvement is evident in 

Figures (15) and (16) which shows the results of analyses using DIANA with and without the 

expansion model. It was noted that the effect of expansion on the load deformation response is to 

increase the strength and to increase the stiffness near ultimate. Little influence is apparent at low 

and intermediate stress levels. 
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Fig (14): Volumetric response of the Kupfer et al. analysis 
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Fig (15): Influence of expansion Effect for Panel (PV23) (Vecchio 1982). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (16): Influence of expansion Effect for Panel (PV25) (Vecchio 1982). 

 

 

 

Table (1): Specimens properties 

 

Specimen 
cf ′ ,MPa ft,MPa εo νo ρx , % fyx,MPa ρy , % fyy,MPa 

Kupfer et al. 18.7 1.46 0.002 0.15 - - - - 

PV23 20.5 1.5 0.002 0.3 1.785 518 1.785 518 

PV25 19.2 1.45 0.002 0.3 1.785 466 1.785 466 

 

 

 

CONCLUSIONS  

    Based on the analytical work, the following conclusions are made: 

1- The proposed confined concrete model proved capable of providing good estimates of 

strength and deformations for concrete elements subjected to multiaxial compressive 

stresses. Applications of the model to finite element analyses were successful when behavior 

was sought on a “macroscopic” level. 

2-  The consideration of the Poisson’s ratio effect can have a significant effect and has 

improved the accuracy near ultimate strength. 

3- The consideration of the Poisson’s ratio effect can have a significant effect when the tensile 

principal strain is relatively small. 

4- The pre-strain approach handled the asymmetry of the material stiffness matrix in a 

numerical stable manner when including the effect of Expansion due to Poisson’s ratio. 

5- Both confinement and expansion effect can model the response of concrete members 

subjected to different load conditions. 
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NOTATIONS 

[ ]′cD  Concrete material stiffness matrix in principal direction 

Ec Modulus of elasticity of concrete (initial tangent modulus) 

Ec1 Concrete tangent modulus in tensile principal strain direction 

Ec2 Concrete tangent modulus in intermediate principal strain direction 

Ec3 Concrete tangent modulus in compressive principal strain direction 

Es Modulus of elasticity of reinforcing bars 

fc Compressive principal stress in concrete 

cf ′  Compressive strength of concrete cylinder 

fc1 Tensile principal stress in concrete 

fc2 Intermediate principal stress in concrete 

fc3 Compressive principal stress in concrete 

fc3f Required fc3 to cause failure in presence of on  fc1 and  fc2 

fp Peak stress 

ft Modulus of rupture  

{F} Structure nodal force matrix 

{F
*
} Equivalent nodal loads due to prestrain 

G Shear modulus 

G12 Tangent shear modulus of concrete relative to 1,2 axes 

G23 Tangent shear modulus of concrete relative to 2,3 axes 

G13 Tangent shear modulus of concrete relative to 1,3 axes 

gf Area under tensile stress-crack strain curve 

 I2 Second invariant of stress vector 

J2 Second invariant of deviatoric stress tensor 

Kc   Coefficient reflecting influence of transverse tensile straining ( Model B) 

Kf Coefficient reflecting influence of nominal strength of concrete 

Ks   Coefficient reflecting influence of transverse tensile straining ( Model A) 

Kσ Peak stress factor 

Kε Strain at peak stress factor 

[K] Structure stiffness matrix 

[kc] Element stiffness matrix evaluated for concrete component 

[ks]i Element stiffness matrix evaluated for i-direction reinforcement 

n Curve fitting factor 

{r} Structure nodal displacement matrix 

{rc} Free nodal displacement due to concrete prestrain 

{rs} Free nodal displacement due to steel prestrain 

u,v,w Displacement coordinates in x,y and z Cartesian coordinates 

x,y,z Cartesian coordinates 

[T] Transformation matrix 

Zm Slope factor for post-peak compressive curve 

β Shear retension factor 

γ1, γ2, γ3 Shear retension parameters 

∆V/V  Volumetric strain = .ε1+ ε2+ ε3 

εc Compressive principal strain in concrete 

εcr Cracking strain 

εc1 Largest principal tensile strain in concrete 

εc2 Intermediate principal strain in concrete 

εc3 Compressive principal strain in concrete 
o

1cε  Concrete expansion strain in 1-direction 
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o

2cε  Concrete expansion strain in 2-direction 

o

3cε  Concrete expansion strain in 3-direction 

{ }o

cε  Concrete pre-strain relative to global axis 

{ }o

cpε  Expansion strain in principal direction 

εo Strain in concrete cylinder at peak stress cf ′  ( a negative value ) 

εp Strain at peak stress ( a negative value ) 

εs Strain in steel reinforcement 

εsu Ultimate strain for steel reinforcement 

{ }o

sε  Smeared reinforcement pre-strain relative to global axis 

εt Tensile fracture strain 

ε1 Tensile principal strain 

ε2 Intermediate principal strain 

ε3 Compressive  principal strain 

λ Concrete compression softening factor 

ν Poisson’s ratio of linear isotropic material 

σy Yield stress of reinforcing bars 

νij Component of strain in i-direction due to a stress in the j-direction   

νo Initial Poisson’s ratio 

γxy Shear strain relative to x,y axes 

γyz Shear strain relative to y,z axes 

γzx Shear strain relative to z,x axes 
 



Journal of Engineering  Volume 13  June 2007         Number 2  
 

  

 1399

 

 

 

 

 

ANALYTICAL AND NUMERICAL STRESS ANALYSIS OF THICK 

CYLINDER SUBJECTED TO INTERNAL PRESSURE 
 

 

 
       Assist. Prof. Dr. Adnan N. Jamel                                      Assist. Lecturer: Oday. I. Abdullah 

     University of Baghdad / College of Eng.                           University of Baghdad / College of Eng. 

             Mechanical Eng. Dept.                                                             Nuclear Eng. Dept. 

 

 

ABSTRACT 

 

 The present work is an attempt to investigate the vibrations characteristics and effect of static 

stresses and deformation in partially pressurized thick cylindrical shells, such as the gun barrels. The 

method used cover analytical investigation developed to determine static stresses and deformation 

along the thick cylindrical shell using LAME'S equation. The numerical investigation is developed 

using the finite element method with axisymmetric element (Plane 42) four nodes to determine the 

static response and solid element (Solid 45) eight nodes for vibration analysis by using the ANSYS 

package. The obtained results show a good agreement with the other investigators. It's found that the 

natural frequency of the selected models almost equal (150. Hz) and these results indicate that the 

frequency of powder gasses pressure more than (150 Hz) to be far away from resonance phenomena. 
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INTRODUCTION 

 

 The gun barrel loaded by the pressure of powder gasses has a dynamic characteristics 

deformations and stresses which do not depend on the value of the pressure of powder gasses only but 

also on the velocity of loading. This means that they depend on the jumps of pressure from the loaded 

points to unloaded points and on the barrel wall stiffness. The solution of barrel strength as a dynamic 
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problem is a very complex problem and can be solved by a new progressive mathematical solution 

like finite element computations. 

 The static and dynamic behavior of the gun barrel are obtained by considering the barrel as a 

perfectly asymmetrical, and for the actual problem, the following assumptions are taken into 

consideration (Mahmood, 1995). 

1. The barrels are two types. 

a- Thin-walled pressure vessels. 

b- Thick-walled pressure vessels. 

2. Material of barrel wall is homogenous and isotropic. 

3. Barrel is loaded by uniformly distributed pressure which is the pressure of powder gasses affecting 

the barrel as continuously uniformly distributed pressure on the whole barrel length. 

 

There is a great amount of work has been down towards the investigation of the circular 

cylindrical shells under static load. The static stresses and deformation for a thick hollow cylinder 

under the affect of partially pressure are studied and reported in (Mahmood, et al, 1990). The study of 

the static stresses and deformations a long the inner surface of (152 mm) gun-barrel are reported in 

(Mahmood, 1995) in which the effect of variation of powder gas pressure and driving band pressure a 

long the axial length of gun barrel were considered. The free vibration of the thick circular cylindrical 

shells and rings are discussed in (Singal and Williams, 1992). The well knows energy method which 

is bases on the three-dimensional theory of elasticity was used in the derivation of the frequency 

equation of the shell. This yields resonant frequencies for all the circumferential modes of vibration 

including the breathing and beam-type modes. A semi analytical finite element was employed in 

(Ganesan and Sivadas, 1994) for the investigation of vibration behavior of cantilever homogeneous 

isotropic circular cylindrical shells with variable thickness, the thickness varies in the axial direction; 

the mass of the shell is made constant for particular length to radius ratio.  

The dynamic behavior of steel cylindrical shell panels subjected to air-blast loading has been 

investigated in (Redekop, 1990), a combined theoretical and numerical solutions where obtained, 

results where computed for cases of rectangular and square panels having hinged and immovable 

boundary condition, a comparison of the study was presented for several panel rise cases, and 

conclusions are drowning. The work done in (Weingarten and Fisher, 1982) concerned the transient 

response of a homogeneous, hollow, conical frustum loaded by an ax symmetric time dependent 

lateral pressure, mode shapes and eigenvalues calculated in the free vibration analysis were used in a 

modal solution for the transfer displacement, stress resultant, stress couple, resultant and meridian 

stress of the forced vibration problem. Numerical results were presented for fully clamped frustum 

subjected to an instantaneous impulsive loading. A solution was presented in (Wiliam, 1972) for a 

semi-infinity cylinder shell subject to dynamic loading at one and using the method characteristics, 

explicit results were obtained for the propagation of discontinuities, these results were combined with 

a simple numerical reduce to obtain the solution in all region. 

 

ANALYTICAL SOLUTION: 
 

 The problem of determining the tangential stress ( )tσ  and the radial stress ( )rσ  at any point of 

a thick walled cylinder in terms of the applied pressures and the dimensions was solved by the French 

electrician Gabriel Lame in (1833). The cylinder shown in Fig. 1 has radii (a) and (b) subjected to 

both a uniformly distributed internal pressure of (Pi) and an external pressure of (Po). 

 Select a thin shell of radius (r), the thickness (dr) and the length unity. The tangential stress in 

this shell is ( )tσ , the radial stress on the inner surface is ( )rσ  and that on the outer surface is 

( )rr dσσ + , where ( )rdσ  is the increment in ( )rσ  due to the variation of pressure across the cylinder 

wall. The radial stresses are assumed (in correctly) to be tensile, so a negative result for ( )rσ  will 
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denote compression. This shell may be treated as a thin cylinder, hence, for equilibrium, a vertical 

summation of forces must equal zero (Nasman, 2005), Fig. 2 shows a half-section of a typical shell: 

 

( ) ( ) ( ) 0222. =−−++ drrrdrd trrr σσσσ                                                               (1)     

    

 

The final equation obtained from solving Eq. (1) give the following general expression for ( )rσ  and 

( )tσ  at any point (Nasman, 2005): 
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 Under the effect of internal pressure, the deformation of the cylinder walls takes place that 

results in stresses in the cylinder metal (Nasman, 2005). Every wall element limited by adjacent radial 

and concentric circular sections is subjected to circular and axial extension and to radial compression 

as shown in the Fig. 3. 

 

The wall deformation at r=a: 
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Similarly at r=b; 
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THE FINITE ELEMENT SOLUTION: 
 

The finite element method can be applied for any kind of problem including the investigated 

problem because it is a powerful method and it's almost easy to be implemented by the computer, 

therefore many packages may be found which deal with this kind of problem. One of these packages 

is the ANSYS which is a powerful package and can deal with the static and dynamic problems with a 

merely simple input data in files stored in files and from these data the results are obtained.     

  

 For the static analysis the element Plane 42 is used. This element used for 2-D modeling of 

solid structures. The element can be used either as a plane element (plane stress or plane strain) or as 

an axisymmetric element. The element is defined by four nodes having two degrees of freedom at 

each node: translations in the nodal X and Y directions as shown in Fig. (4).  

But for the free vibration analysis the Solid 45 element is used. This element used for the three-

dimensional modeling of solid structures. The element is defined by eight nodes having three degrees 

of freedom at each node: translations in the X, Y and Z directions as shown in Fig. (5).   
 

Static Analysis 

 The system equations formed for static analysis include the system stiffness matrix and the 

system load vector. The equations may be written in matrix relations as follows (Batha, 1976):  

 

[ ] { } { }FUK =                                                                                                          (5) 
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Eq. (5) solved by Gauss iteration method. 

 

Normal Modes Analysis 

 The system equation for normal mode analysis includes the system stiffness and mass matrices 

may be written in matrix notation as follows (Batha, 1976): 

 

[ ]{ } [ ]{ } 0=+ UKUM &&                                                                                                  (6) 

 

                      DOFitU iiii ........2,1)(sin =+Φ= θω                                                              (7) 

      

            In this harmonic expression, iΦ is a vector of nodal amplitudes (mode shape) for the ith mode 

of vibration. The symbol iω  represents the angular frequency of mode i, and iθ  denotes the phase 

angle. By differentiating Eq. (7) twice with respect to time: 

       

                      )sin(2

iiiii tU θωω +Φ−=&&                                                                                          (8) 

    

Substitution of Eq. (8) and Eq. (7) into Eq. (6) allows cancellation of the term sin (ωi t+θi), which 

leaves, 

        

                      0])[]([ 2 =Φ− ii MK ω                                                                                               (9) 

 

Eq. (9) has the form of the algebraic eigenvalue problem. Eq. (9) can be solved by subspace iteration 

method.  

 

Verification Test for Static Analysis: 

The following example is given to show applicability of the used program ANSYS to solve the 

cylindrical shells subjected to pressure loading,  

mmL
mm

MN
PmmbRmmaR oi 651,60,5.62,5.37

2
======    

 The output result are compared with numerical solution given by (Cook, 1981) are show in 

Table. 1. A good agreement is obtained which proves the applicability of ANSYS to deal with the 

static analysis of thick cylindrical shells. 

  

Verification Test for Normal Mode Analysis The following example is given to show the 

applicability of the used program ANSYS to solve the cylindrical shells: 

28.0,207,7860,4.250,3.114,76
3

======== υρ GpasE
m

Kg
mmLmmbRmmaR oi  

The values of the first three natural frequencies for the cylindrical shell were compared with 

numerical results given by (Cook, 1981) are show in Table. 2. A good agreement is obtained which 

proves the applicability of ANSYS to deal with the vibration of thick cylindrical shells. 

 

 

GUN BARREL GEOMETRY  

  

The geometry of the studied gun barrel is shown in Fig. 6 where (t) is the thickness of the 

barrel and the chosen thickness is between (3-8 mm) (the internal diameter (caliber) of (60.7 mm), 

external diameter of (69.14 mm) and its length equal to (651 mm))(. The gun barrel is fixed from one 

end to the base and the other side is free where the projectile is fed and fired. The internal surface of 
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the gun barrel is coated with chrome to decrease the friction and erosion between the projectile and 

the surface of the gun barrel. 

The pressure-length curve and pressure-time curve are shown in Figs.7 and 8 respectively 

after the ignition starts (Mahmood, 1995), the pressure starts to increase until it reach (5.6 M Pa) 

which is able to carry the projectile and start moves, then the pressure keep on increasing until its 

reach the maximum value (56 M Pa) after (2.23 ms) when the projectile is (80 mm) away from the 

base of the barrier. Then the pressure began to decrease until the projectile leave the barrier after (6.33 

ms). 

 

 

Model No. 1 2 3 

Thickness (mm) 3 4.2 8 

 

 

RESULTS 

 

Static Results: 

Model-1 

 Figs. (9, 10, 11 and 12) show the static radial deflection and, the radial, tangential and 

equivalent static stress distribution along the cylinder at different time steps. 

Model-2 

 Figs. (13, 14, 15 and 16) show the static radial deflection and, the radial, tangential and 

equivalent static stress distribution along the cylinder at different time steps.  

Model-3 

Figs. (17, 18, 19 and 20) show the static radial deflection and, the radial, tangential and 

equivalent static stress distribution along the cylinder at different time steps. 

 

Vibration Analysis: 

 Fig. 21 shows the optimum mesh size for the first model. The first three natural frequencies 

for the first, second and third models are shown in Table. 3.   Figs. (22, 23 and 24) show the first 

three modes shape of the first, second and third models respectively.     

 

DISCUSSION: 

     

          The static deformations, stresses, natural frequencies and mode shapes are computed for thick 

cylinder (three models). It has been found that the maximum static radial deflections are (0.105mm), 

(0.074mm) and (0.042mm) for model (1), model (2) and model (3) respectively, and for the same 

models the maximum equivalent stresses along the cylinder are (640 2/ mmN ), (460 2/ mmN ) and 

(245 2/ mmN ) respectively. From the static results, it can be observed the increases in of the cylinder 

thickness leads to decreases in the stresses and deformations and that due to the higher increases in the 

structural stiffness. It was observed that the equivalent static stresses induced at the cylinder wall for 

different time steps some positions the stresses reach a maximum values at a certain time. 

           Also it can be noted that when the thickness increases the natural frequency increases too. The 

percentage increases in the fundamental natural frequency when thickness variation from (3 mm to 8 

mm) is found (7 %).  

 

CONCLUSIONS 

 

 From this analysis can be concluded:- 
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1. It can be noted, the stresses and radial deformations in the first model larger than the second and 

third models. 

2. The natural frequency decreases when the thickness of the cylindrical shell decreases because 

reduction in structural stiffness. 

3. The maximum effect of the equivalent stresses occurs between (80 and 100 mm).    

4. Were obtained a good agreement between the present numerical and the present analytical results. 

     

 

Table. 1 Values of tangential stress and radial stress for cylindrical shell subjected to pressure loading. 

 

Solution Type )/( 2mmNrσ  )/( 2
mmNtσ  

FEM (Cook, 1981)( -19 86.5 

ANSYS (present ) -18.35 89.1 

Error (%) 3.4 3 

 

 

 

Table. 2 Values of the first three natural frequencies for the cylindrical shell. 

  

Solution Type First Mode (Hz) Second Mode(HZ) Third Mode(HZ) 

FEM (Cook, 1981)( 1898.1 1873.52 2988.19 

ANSYS (present ) 1898.1 1898.2 3013.8 

Error with Exact (%) 1.0 1.3 0.85 

 

 

 

 

 

Table.3 The first three natural frequencies of thick cylinders models. 

 

 First Mode (Hz) Second Mode(HZ) Third Mode(HZ) 

Model-1 150.00 150.02 864.97 

Model-2 152.90 152.94 879.52 

Model-3 162.40 162.45 926.34 
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Fig. 2 Stress on half-shell cylinder. 

tσ
 

Unit length 
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dr 
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r∆
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Fig. 3 Cylinder wall deformation. 

rr d σσ +

 

Pi 

Po 

a 

b 

dr 

r 

tσ tσ

rσ

rr dσσ +

Fig. 1 Thick-walled cylinder subjected to uniform internal pressure ( )iP   and external pressure ( )oP . 

Fig. 4 Plane 42 structure solid element. 

Fig. 5 Solid 45 structure solid element. 
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Fig. 7 Pressure Length Curve. 

 

Fig. 8 Pressure Time Curve. 
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Fig.9  Static Radial Deformation along the Cylinder (Model-1) at Different Time Steps.  

Fig. 10 Static Radial Stresses Along the Cylinder (Model-1) at Different Time Steps. 
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Fig. 11 Static Tangential Stresses Along the Cylinder (Model-1) at Different Time Steps. 

Fig. 12 Static Equivalent Stresses Along the Cylinder (Model-1) at Different Time Steps. 
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Fig. 13 Static Radial Deformation along the Cylinder 

(Model-2) at Different Time Steps. 

Fig. 14  Static Radial Stresses Along the Cylinder 

(Model-2) at Different Time Steps. 



A. N. Jamel                                                                   Analytical and Numerical Stress Analysis of Thick Cylinder  

O..I. Abdullah                                                                                      Subjected to Internal Pressure 

 

 1410

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15  Static Tangential Stresses Along the Cylinder 

Fig. 17  Static Radial Deformation along the Cylinder (Model-3) at Different 

Time Steps. 

Fig. 18  Static Radial Stresses Along the Cylinder (Model-3) at Different 

Time Steps. 
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Fig. 19  Static Tangential Stresses Along the Cylinder (Model-3) at Different Time 

Steps. 

Fig. 20  Static Equivalent Stresses Along the Cylinder (Model-3) at Different Time 

Steps. 
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Fig.  21 Suitable mesh size for thick cylinder (Model-1). 

Fig 22 The first three mode shapes for the (Model-1). 

First mode shape Second mode shape Third mode shape 
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Fig 23 The first three mode shapes for the (Model-2). 

First mode shape Second mode 

shape 
Third mode shape 

 

Fig 24 The first three mode shapes for the (Model-3). 

First mode shape Second mode 

shape 
Third mode shape 
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NOMENCLATURE: 

 
a  Internal radius of thick cylinder (mm).  

b  External radius of thick cylinder (mm). 

L Length of thick cylinder (mm). 

r  Radius of thick cylinder (mm). 

iP  Distributed internal pressure (M Pa). 

oP  Distributed external pressure (M Pa). 

( )tσ  Tangential stress at any point of a thick walled cylinder 2/ mmN .  

( )rσ  Radial stress at any point of a thick walled cylinder 2/ mmN . 

υ  Poisson's ratio. 

E  Young's modulus.  

ir∆  Internal wall cylinder deformation (mm). 

or∆  External wall cylinder deformation (mm). 

[ ]K  Stiffness matrix. 

{ }F  Force load vector. 

{ }U  Displacement vector. 

{ }•
U  Velocity vector. 

{ }••
U  Acceleration vector. 

[ ]M  Mass matrix. 

iΦ  Vector of nodal amplitudes (mode shape) for the ith mode of vibration. 

iω  The angular frequency of mode I (rad /sec). 

ρ  Density, 3/ mKg . 
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NATURAL CONVECTION HEAT TRANSFER IN A VERTICAL 

CONCENTRIC ANNULUS 
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ABSRACT 

             Experiments were carried out to study the local and average heat transfer by natural convection in 

a vertical concentric cylindrical annulus. The experimental setup consists of an annulus has a radius ratio 

of 0.555 and inner cylinder with a heated length 1.2m subjected to the constant heat flux while the outer 

cylinder is subjected to the ambient temperature. The investigation covers heat flux range from 58.2 

W/m2 to 274.31 W/m2. Results show an increase in the natural convection as heat flux increases leads to 

an improve in the heat transfer process. An empirical equation of average Nusselt number as a function of 

Raylieh number was deduced .  
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INTRODUCTION 

           The problem of natural convection heat transfer across a horizontal and vertical cylindrical 

annulus has received considerable attention in view of its fundamental importance germane to numerous 

engineering applications. As a result, extensive experimental and theoretical works dealing with the flow 

and associated heat transfer characteristics of natural convection in such configuration have been reported 

in the literature. Comprehensive reviews on natural convection in concentric and eccentric annuli are 

available (Kueehn 1976 &1978, Van de Sande 1979, and Yao 1980) and there is no need to repeat them. 

However, all of the previous studies are concerned with the horizontal annulus; little attention has been 

paid to annuli with a vertical position. (Van de Sande and Hamer 1979) have obtained empirical 

correlations for natural convection heat transfer in concentric and eccentric annuli of constant heat flux. 

(Glakape et al. 1986) presented a numerical solution for air in concentric and eccentric configurations 

with specified constant heat flux at the boundaries. (Akeel 2005) has presented an experimental and 

theoretical study for mixed convection heat transfer through concentric annuli. The lack of experimental 

data concerning the problem of natural convection in the vertical concentric annulus, and the practical 

importance of this problem in the industry applications, motivated the present work. 

 

 EXPERIMENTAL APPARATUS 

           The test section is shown diagrammatically in Fig.1 and consists of 4 mm wall thickness, 50 mm 

outside diameter and 1.2 m long aluminum cylinder (K) located centrally in 5 mm thickness , 90 mm 

inside diameter and 1.2 m long aluminum cylinder (I), by fitting it at the test section inlet with the 20 mm 

inside diameter , 50 mm outside diameter and 15 mm long Teflon tube (N) and at the test section exit 

with the teflon piece (M). A ring (P) is used to hold and support the aluminum cylinder (K) with the 

teflon piece (N) centrally inside the settling chamber by adjustable screws (Q). The teflon was chosen 

because of its low thermal conductivity in order to reduce the heat loss from the aluminum cylinder ends. 

A well design Teflon bell mouth (H) is fitted at the annulus outer aluminum cylinder (I) and bolted inside 

the settling chamber (D). The inlet air temperature was measured by one thermocouple (J) located in the 

settling chamber (D) while the outlet bulk air temperature was measured by three thermocouples (Z) 

located in the test section exit . The local bulk air temperature was calculated by using a straight line 

interpolation between the measured inlet and outlet bulk air temperature. 

        The inner cylinder was heated electrically using an electrical heater which consists of a nickel-

chrome wire , wound as a coil  spirals around solid teflon tube and is covered by a 2 mm thickness 
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asbestos layer , and the space between the asbestos and the inner cylinder wall is fitted with a fine grade 

sand to avoid heat convection in it and to smooth out any irregularities in the heat flux. The hole 

apparatus is designed with a view to obtain a good concentricity of the core cylinder and the containing 

cylinder. The temperature of the outside surface of the inner cylinder was measured by seventeen asbestos 

sheath alumel-chromel (type K) thermocouples , arranged along the cylinder , the measuring heads of the 

thermocouples were made by fusing together the ends of two wires. 

          The thermocouples were fixed by drilling holes of 1.5 mm diameter in the cylinder wall and the 

ends of the holes chamfered by a 3 mm slug to locate the measuring junctions which were then fixed by a 

high temperature application Defcon adhesive . The excess adhesive was removed and the cylinder outer 

surface was cleaned carefully by fine grinding paper. All the thermocouples wires and heater terminals 

were taken out the test section through both teflon pieces (N,M) . 

           On the other hand , ten thermocouples (type K) were  used to measure the inner surface 

temperature of the annulus outer cylinder (I). Thermocouples positions at the outer surface were located 

and then a 2 mm deep pits were drilled in which the thermocouples were fixed by Defcon adhesive. All 

thermocouples were used with leads , the thermocouple with lead and without lead were calibrated 

against the melting point of ice made from distilled water and the boiling points of several pure chemical 

substances. To determine the heat loss from the test section ends, two thermocouples were fixed in each 

teflon piece. The distance between these thermocouple was 12 mm. Knowing the thermal conductivity of 

the teflon , the ends condition could thus be calculated. 

 

EXPERIMENTAL PROCEDURE 

       To carry out an experiment the following procedure was followed: 

1- The electrical heater was switched on and the heater input power then adjusted to give the required 

heat flux. 

2- The apparatus was left at least three hours to establish steady state condition. The thermocouples 

readings were measured every half an hour by means of the digital electronic multimeter until the reading 

became constant , a final reading was recorded. The input power to the heater could be increased to cover 

another run in a shorter period of time and to obtain steady state conditions for next heat flux. 

3- During each test run , the following readings were recorded: 

a- The readings of the thermocouples in ˚C. 

b- The heater current in amperes. 

c- The heater voltage in volts. 
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DATA ANALYSIS 

         Simplified steps were used to analyze the heat transfer process by natural convection from the inner 

cylinder which was subjected to a uniform heat flux while the outer cylinder was subjected to the ambient 

temperature. The total input power supplied to the inner cylinder can be calculated: 

 

Qt=V” ×I                                                                                   (1) 

 

         The convection and radiation heat transferred from the inner cylinder is : 

 

Qcr=Qt- Qcond                                                                             (2) 

 

where Qcond is the conduction heat loss which was found experimentally equal to 5 % of the input power.  

The convection and radiation heat flux can be represented by: 

 

qcr= Qcr/A                                                                                     (3) 

 

where: 

A = 2π r1 L 

         The convection heat flux , which is used to calculate the local heat transfer coefficient is obtained 

after deduce the radiation heat flux from  qcr value. The local radiation heat flux can be calculated as 

follows: 

 

( ) ( )[ ]44
273

z
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(t273

z
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q

21

+−+=
−

              (4) 

 

where: 

F1-2= view factor between inner and outer cylinder ≈1 

z)s
(t = local temperature of inner cylinder. 
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z
)

s2
(t = average temperature of outer cylinder. 

ε = emissivity of the polished aluminum surface=0.09. 

Hence the convection heat flux at any position is: 

 

q = qcr – qr                                                                                     (5) 

 

The local heat transfer coefficient can be obtained as: 

 

hz

zbzs
)t()(t

q

−
=                                                                         (6) 

zb
)t( = Local bulk air temperature. 

        All the air properties were evaluated at the mean film air temperature (Keys 1966): 
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=                                                                   (7) 

 

f
t = Local mean film air temperature. 

The local Nusselt number (Nuz) then can be determine as: 

 

Nuz
κ

= hz
Dh

                                                                       (8) 

        The average values of Nusselt number Num can be calculated based on calculation of average inner 

surface temperature and average bulk air temperature as follows: 

 

∫
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The average values of the other parameters can be calculated as: 
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Ram=Grm . Prm                                                                         (15) 

where: 

( )
f

t2731β +=  

        All the air physical properties ρ, µ, ν, and k were evaluated at the average mean film temperature 

(
f

t ). 

 

EXPERIMENTAL RESULTS 

            The variation of the inner cylinder surface temperature for different heat flux is shown in Fig.2 . It 

is obvious that the surface temperature increases at the stage of entrance and attains a maximum point 

after which the surface temperature begins to decrease at high heat flux (q≥181 W/m2) and be almost 

constant for small heat flux (q≤152 W/m2). The rate of surface temperature rises at early stage is directly 
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proportional to the wall heat flux because of the faster increasing of the thermal boundary layer as heat 

flux increase (i.e., increasing of buoyancy effect). 

           Fig.3 & 4 show the effect of heat flux on the local and average Nusselt number along the inner 

cylinder. It is clear that the results of higher heat flux for local and average Nusselt number are higher 

than that of lower heat flux. Fig.3 shows also sharp decrease for the local Nusselt number values at the 

entrance of the annulus because the boundary layer thickness is zero and the natural convection is poor in 

this region, then increase downstream because of increasing of natural convection. The values of the 

mean Nusselt number are plotted in Fig.5 in the form of log(Num) against log(Ra) for the range of Ra 

from 0.68611×105 to 1.728559×105. All the points as can be seen are represented by linearization of the 

following equation. 

 

Num=2.31812 Ra0.083188                                                           (16) 

 

CONCLUSIONS 

1. The extent of the local mixing increases as the heat flux increases. 

2. The heat transfer process improves as heat flux increase. 

3. The effect of buoyancy is small at the annulus entrance and increase down stream. 
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NOMENCLUTURE 

A: inner cylinder surface area; m2 

Dh: hydraulic diameter=2(r2-r1): m 

I: current; Amp 

κ : thermal conductivity; W/m2.°C 

L: annulus length; m 

 (Num): mean Nusselt number  

Q: convection heat loss; W 

Qt: total heat given; W 

Qcr: convection- radiation heat loss; W 

qr: radiation heat flux; W/m2.°C 

q: convection heat flux; W/m2.°C 

r1: outer radius of inner cylinder; m 

r2: inner radius of outer cylinder; m 

V”: voltage; volt 
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Fig. 1: Diagram of Experimental Apparatus. 
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Fig.2: Variation of the Surface Temperature with the Axial Distance 
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                  Fig.4:  Average Nusselt Number Versus Axial Distance.  
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ABSTRACT 

 Numerical solutions are presented for the transient natural convection heat transfer problem in 

horizontal isothermal cylindrical annuli, enclosed in heated inner and cooled outer cylinders. Solutions 

for laminar case were obtained within Grashof number based on the inner diameter which varied from 

1x10
2
 to 1x10

5
 in air. Both vorticity and energy equations were solved using alternating direction 

implicit (ADI) method and stream function equation by successive over relaxation (SOR) method. 

The structure of fluid flow such as a velocity vector and temperature distribution as well as Nusselt 

number were obtained and the effect of diameter ratio on them is examined. In addition, the Grashof 

number was changed with the influence of variation Prandtle number and diameter ratio. Our 

numerical calculation are summarized by Nussult number vs. Grashof number curves with diameter 

ratios and prandtl as a parameter, which serves as a guide to natural convection heat transfer 

calculated from annulus. Good agreement with previous data were obtained. 
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INTRODUCTION 

IN RECENT years, natural convection heat transfer in a cylindrical annulus has attracted much 

attention with relation to thermal storages systems, solar collectors, spent nuclear air fuel cooling, 

nuclear reactors, aircraft fuselages insulation, cooling of electrical equipments. The horizontal 

convection isothermal cylinders were used pressurized gas underground electric transsimition cables 

(Pederson et.al. 1971). In this paper, we present a brief review of selected experimental papers and 

concerned theoretical studied. (Liu et.al. 1961) measured the overall heat transfer and radial 

temperature profiles of air , water and silicone fluid. Qualitative flow descriptions were given for each 

fluid-Photographs of flow patterns in air using smoke were presented by (Bishop and Caley 1966) 

and (Bishop et.al 1968). Different flow regimes depending on the Grashof number and diameter ratio 

were delineated by  (Powe et.al. 1969). The first determination of local heat transfer coefficients in 

annular geometry with air was made by (Eckert and Soehngen 1970) using Mach-Zender 

interferometer The first numerical solution of natural convection between horizontal convection 

cylinders was obtained by (Crawford and Lemlich 1962) using Gauss-Seidel iteration approach for 

Prandtl number of 0.7 and for diameter ratio of 2, 8 and 57. (Abbot 1964) obtains a solution for 

diameter ratio close unity using matrix inversion techniques. (Mack and Bishop 1968) employed a 

power series expansion valid in the range diameter ratios from 1.15 to 4.15. However, as pointed out 

by (Hodnett 1973), if the diameter ratio becomes too large; there is a region in the annulus where 

convection effects are as important as conduction effects. Such a problem has been attacked by 

(Hodnett 1973) using a perturbation method. (Powe et. al. 1971) examined the transition from steady 

to unsteady flow for air with Prandtl around 0.7 by determining the critical Rayleigh number at which 

an eddy forms and turns in the opposite direction of the main cells. (Kuehn and Goldstein 1978) 

performed experimental and theoretical–numerical studies for air and water at Rayleigh numbers from 

2.1x10
4
 to 9.8x10

5
 at diameter ratio of 2.6. (Charrier-Mojtabi et al 1979) presented numerical 

solutions at a Prandtl number of 0.7 and 0.02 with various diameter ratios and Rayleigh numbers. 

(Tsui and Tremblay 1983) carried out theoretical-numerical study at Grashof number from 7x10
2
 to 

9x10
4
 and Prandtl number of 0.7 with diameter ratio of 1.2, 1.5 and 2. A numerical investigation has 

been performed by  Hand and  Back (1999), to examine the interaction between radiation and steady 

laminar natural convection in cylindrical annuli filled with a dry gas. Radiation was found to play an 

important role in determining thermo-fluid dynamics behavior in natural convection induced by hot 

inner cylinder under large temperature difference. All references cited except references (Charrier-

Mojtabi et.al.1979) and (Tsui and Trembaly 1983)are confined to the steady-state analysis. Even 

(Charrier-Mojtabi et al 1979) gives the steady- state results only, and (Tsui and Tremblay 1983) 

presents the transition-state results with Prandtl around 0.7 only.  

      The purpose of this paper is to present the transient-state results with the effect of variation of 

Prandtl number and diameter ratio, which are new to the author's knowledge. 
 

MATHEMATICAL FORMULATION 

 
 The physical model and the coordinate system in the present analysis are shown in Fig.1. A 

fluid layer is enclosed between two concentric cylinders with radii ri and ro. Temperatures at the 

heated inner cylinder surface and the cooled outer one, designated by Th and Tc , respectively, are to be 

constant. Flow and temperature fields are assumed to have a symmetric nature with respect to vertical 

plane (θ=0
o
 and 180

o
) and the region of computation is limited between θ=0

o
 and 180

o
. 

 The physical system consists of a Newtonian fluid air, in an annulus bounded by two 

isothermal surfaces. To formulate the problem it is assumed that: (a) the fluid motion and temperature 

distribution are two-dimensional (2-D), (b) the fluid is viscous and incompressible, (c) frictional 

heating is negligible, (d) the difference in temperature between the two isothermal boundaries is small 

compared with 1/β, (c) the fluid properties are constant except for the density variation with 

temperature. Thus, within the Boussinesq approximation, four governing equations (two momentum, 
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one energy and continuity) in polar coordinate are as follows  (Torrance 1985) and (Chun-Yen 

1979): 
 

0
1

)(
1

=
∂

∂
+

∂

∂

θ

v

r
ru

rr
                                                                                                        (1) 

 

 )
2

(
1

cos)(
22

2

θ
υ

ρ
θβ

θ ∂

∂
−−∇+−−=

∂

∂
+

∂

∂
+

∂

∂ v

rr

u
u

dr

dp
TTg

u

r

v

r

u
u

t

u
c               

 

 )
2

(
11

sin)()
22

2

θ
υ

ρ
θβ

θ ∂

∂
+−∇+−−=

∂

∂
+

∂

∂
+

∂

∂ u

rr

v
v

dr

dp

r
TTg

v

r

v

r

v
u

t

v
c    

 

)( 2
T

T

r

v

r

T
u

t

T
∇=

∂

∂
+

∂

∂
+

∂

∂
α

θ
                                                                              (4)  

                                               

where all constants, variables and operators are dimensional. 

     

  The coordinates are r, measured from the center of the system, and θ, measured counterclockwise 

from the downward vertical line. The radial velocity u is positive radially outwards, and the tangential 

(angular) velocity v positive in the counterclockwise direction for 0
o≤ θ ≤ π . 

      The vector potential Ψ  and vorticity vector Ω are introduced (Torrance 1985)  
 

              Ψ∇= xV                                                                                                   (5) 
              

             xV∇=Ω                                                                                                    (6)  

                    

where  Ψ  and Ω   satisfy the following solenoid condition 
               

             0. =Ψ∇                                                                                                      (7) 
                

              0. =Ω∇                                                                                              (8) 
    

   The vector potential satisfies the equation of continuity, eq. (1), automatically. Then, the relation 

between Ψ  and Ω  is presented in the following dimensionless form 
    

Ψ−∇=Ω 2
                                                                                                 (9) 

 

                                             

     

 

 

 

 

 

 

 
Fig.1. Natural Convection in Air Filled Annulus Bounded by Two Isothermal Walls 

 

         Taking the curl of eqs.(2)and(3) to eliminate the pressure term, the vorticity transport equation 

is obtained in the dimensionless form 
 

Heated wall  Th 

Cooled wall Tc 

ro 
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In the same manner, the dimensionless form of the energy equation is written as   
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    where all constants, variables and operators are dimensionless. 

      In the eqs. (9-12), the following dimensionless variables and parameters are used 
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Eqs. (10) and (11) are coupled through the buoyancy force. Furthermore, both the vorticity eq (10) 

and energy eq. (11) are non-linear due to the convective terms. It is to be noted that both the vorticity 

eq. (10) and energy eq. (11) are of the parabolic type and the stream function eq. (9) is of the elliptic 

type. Eq. (9) is coupled with eqs. (10) and (11) through eq. (12) which relates the stream function to 

the velocities. Our problem is to seek    Θ(r,θ,t), Ω(r,θ,t) and ψ(r,θ,t) which satisfy three partial 

differential eqs. (9), (10) and (11) as well as the following initial and boundary conditions. To begin 

with, the fluid in the annulus is stationary with a uniform temperature:    

 

 0==Ψ=Ω T every where at τ =0                                                                              (14)         

      The boundary conditions are  

 

  0
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∂
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=

∂

Ψ∂
=Ψ

RR θ
on both walls,i.e. R=Ri and R=Ro,                                              (15) 

          θ = 1  at   R = 1,                                                                                                (16-a) 

          θ=0 at   R =                                                                                                           (16-b) 

 

Eqs (5) and (9-11) are the final form of governing equations, which were transformed into the 

finite difference equations and solved numerically (Chun-Yen 1979). The relaxation factors chosen 

(1.7) for the stream function, and the number of nodal points in the grid was 41, 21 for the R-θ 

respectively. 
 

NUMERICAL SOLUTION 

In the field of heat transfer, several numerical methods have been developed to deal with complicated 

physical problems. The finite difference method is one of the most widely used numerical methods for 

decades. The present work is concerned with numerical simulation of two dimensional transient 

natural convection flow, by means of alternating direction implicit (ADI) method for vorticity and 

energy equation, and by successive over relaxation (SOR) method for stream function equations. The 

time increment ( Tsui and Trembaly1983) is 

 

 (10) 
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The convergence criteria for Nusselt number is  
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The way for checking the convergence is to compare the mean Nusselt numbers at the inner and outer 

radius. These are usually within 410−=ε at convergence. This convergence criteria is employed in this 

paper.  

      In order to gain confidence in our numerical results, we tried to compare ours with previously 

published resultsre (Charrier-Mojtabi et.al.1979) and (Tsui and Trembaly1983). Fig.2-a, which 

depicts streamlines and isotherms for Gr=10 000, Pr=0.7 and a=2, resemble results presented by (Tsui 

and Tremblay 1983) at Gr =10000, Pr=0.7, and a=2.0.  Fig.2-b which shows streamlines and 

isotherms for Gr =38800, Pr=0.71 and a=2, is similar to one given by (Charrier-Mojtabi et al. 1979) 

at Ra = 3x10
4
, Pr = 0.7 and a = 2.0.  We see good agreement in results at diameter ratio of 2.0 and 

some deviation occurs in results with diameter ratio of 1.5.   

      After obtaining confidence in our results see Table1, we processed to compute the mean transient 

Nusselt numbers at inner and outer radius for our calculations, which cover the Grashof number 10
2
 to 

10
5 

including physical realistic cases and (Tsui and Trembaly 1983). 
 

 

 

a 

GrRi 

 

 

 

(Tsui and 

Trembaly 1983). 

 

 

 

(Present study) 

 

2.0 

10 000 1.64 1.658 

38 800 2.4 2.42 

88 000 3.08 2.99 

       

Local Nuselt numbers at the inner and outer radius Nui and Nuo are defined as follows:  
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Table 1.  Mean Nusselt number resultsfor a=2.0, Pr=0.7 
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The mean Nusselt numbers
i

Nu  and 
o

Nu are the angular average of their local values over the cylinder 

inner and outer surface and can be carried out using numerical integration by Trapezoidal rule 

(Gerald 1970), through eq. (19c). 
 

∫=
A

dANu
A

Nu .
1

                                                                                                   (19c) 

      Both mean transient iNu  and oNu , vs. dimensionless time, τ, are plotted in  Fig.3,  which  

included physical realistic cases (Tsui and Trembaly 1983). As τ increases, both iNu  and oNu  

approach to their steady- state values and should be equal based on a simple energy balance. In fact, 

due to the numerical techniques involved, the values actually obtained differ somewhat. Generally, we 

can note that the dimensionless time increases with increases diameter ratio and decreases with 

increased Grashof number. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Streamlines and isotherms, diameter ratio=2.0, Pr = 0.7,(Tsui and Trembaly 

1983). 

b) Gr=38 800 (Charrier-

Mojtabi et.al.1979) 

a) Gr=10 000 (Tsui 

and Trembaly 1983). 
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Fig.3. Mean Nusselt number vs. dimensionless time, Pr=0.7 
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    The effect of Prandtl number on results was determined by varying Prandtl number at values 0.7, 

5.0, and 10.0 respectively, corresponding to the same values of Grashof numbers and diameter ratios. 

Looking at the effect of variation in Prandtl number that when the diameter ratio changes from 1.2 to 

2.0, It seen that, at a diameter ratio a=1.2, there is no significantly change in the convection heat 

transfer, i.e., Nu  even Gr=1x10
5
 

The maximum non-dimensional transition time increases with increases Prandtl number and high 

convection occur, see Fig.4 The values of mean Nusselt number of higher Prandtl number are higher 

than those for air.  

The convection heat transfer increases very rapidly when the diameter ratio increases further 

from 1.5 to 2.0 and especially at high Grashof number. A review of Fig.3 and 4 show both iNu  and 

oNu  approach unity as time increase. 

The maximum non-dimensional transition time from transient- state to steady- state is 

increased with increase Grashof number that less than unity and excesses unity at high Prandtl number 

and diameter ratio. 

      Local Nusselt number is generally smaller and more uniform at lower Prandtl number as, 

including an approach to conduction. The numerical data obtained in the present study are correlated 

to one-fourth power law see Fig.5. 

The win OS cpu 1.7G and software (Grafer 4.0 and surfer 7.0 )to plot graphs in present study.   
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RESULTS AND DISCUSSION 

Our range of interest covers Grashof numbers from approximately 1x10
2
 to 1x10

5
 and diameter ratio 

from 1.2, 1.5 and 2.0. Three steady state mean Nusselt number, Nu vs. Grashof number, Gr, curves 

are shown in Fig.5 with diameter ratio, a, as a parameter. It is seen that, at a diameter ratio a=1.2, 

there is no or little convective heat transfer even Gr=1x10
5
 which has been substantiated by Kuehn 

and Goldstein's calculation (Kuehn and Goldstein 1978). 

 

      Also, it is clear that the maximum increment in the amount of convection heat transfer with larger 

Prandtl number (Gr=10
5
) by 31% and 25%  at a=1.5, 2.0 respectively compared with corresponding 

values at low Prandtle number. 

Looking at the variation of Nu vs.  a  at fixed Gr it follows that when the diameter ratio, a, changes 

from 1.2 to 1.5, the mean Nusselt number increases very rapidly. When the diameter ratio increases 

further from 1.5 to 2.0, there is a substantial enhancement of the convective heat transfer .However; 

the rate of increase of Nu  vs. a slow down (with increase a than 2.0).  After (a) it reaches 2, the rate 

of increase of convective heat transfer flattens out. This is demonstrated (Kuehn and Goldstein 

1976). 

], which despite a collection of experimental data from previous authors. From an engineer viewpoint, 

there is no advantage to increase the diameter ratio beyond two as far as natural convection is 

concerned.      

      The flow and heat transfer results can be divided in to several regimes (Kuehn and Goldstein 

1978).Near Grashof number of 10
2
 the maximum stream function or center of rotation is near 90

o 
. 

The flow in the top and bottom portions of the annulus is symmetric about the 90
o
 position. The 

velocity profiles at any one position are similar, with the magnitudes directly proportional to the 

Grashof number. The velocities too small to affect the temperature distribution, which remains 

essentially as in pure conduction, see Fig.6. 

      This makes the convection terms in eqs. (10) and (11) vanish. Therefore, eqs. (10) and (11) can 

be approximated by 
 

            








∂

Θ∂
−

∂

Θ∂
=Ω∇

RR
Gr θ

θ
θ cos

1
sin2                                                        (19) 

        

             02 =Θ∇                                                                                             (20) 

       

      A transition region exists for Grashof numbers between 10
2
 and 10

4
. The flow remains in 

essentially the same pattern but becomes strong enough to influence the temperature field. As the 

Grashof number increases, the center of rotation moves upwards.  

     The isotherms begin to resemble eccentric circles near a Grashof of 10
3
, as can be seen in   Fig. 6 

at different diameter ratio. This has been called the 'pseudo-conductive regime'  (Grigull and Hauf 

1966), since the overall heat transfer remains essentially that of conduction.  

      With further increase in Grashof number and increasing diameter ratio, the temperature 

distribution becomes distorted, resulting in an increase in mean Nusselt number. From a plot of 

streamlines and isotherms at Grashof number of 10
4
, the radial temperature inversion appears 

indicating the separation of the inner and outer cylinder thermal boundary layers which obvious 

Fig.5 Correlation of mean Nusselt number as a function of Grashof number 

for different Prandtl number 
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clearly at the top portion of  a=2.0. The cross indicates the location of maximum value of the stream 

function, which would be the center of rotation. This maximum is located near the 70
o 

position. Local 

heat transfer flux values are becoming further distorted from those of conduction. Essentially heat is 

being convected from the lower portion of inner cylinder to the outer cylinder. The vorticity in the 

central core is almost constant, including a region approaching solid-body rotation; see Fig.6-c at high 

Grashof number. 

 

       In addition, steady laminar boundary layer regime exists between Grashof number of 10
4
 and 

10
5
. Streamlines and isotherms in this region are shown in Fig.5. Boundary layer exists on both 

cylinders although the lower portion of the annulus is practically stagnating. 

      As the Grashof number increases further, the flow above the inner cylinder will become turbulent. 

This will create a turbulent boundary layer on the outer cylinder while the inner boundary layer 

remains laminar (Lis1966). Eventually, the inner boundary layer will also become turbulent. 

      The effect of diameter ratio on the results was determined by vary Ro/Rin from 1.2 to 2.0 for the 

whole range of our numerical calculations. The flow pattern don’t change significantly at lower 

Grashof numbers although the center of rotation moves towards the top with increasing diameter ratio 

(a), but separation is clear at high Grashof numbers. The maximum Nusselt number occur near a=2.0 

at Gr=10
5
 but occurs at smallest value at larger a. However, the mean Nusselt number increased as the 

outer cylinder is made large at constant Grashof number. As the outer cylinder becomes large relative 

to the inner diameter, the mean temperature in the annulus decreased. This indicates that the thermal 

resistance around the inner cylinder is becoming the dominant factor in the mean Nusselt number. As 

the outer cylinder become infinitely large, the only thermal resistance is around the inner cylinder with 

the temperature in the gap equal to that of the outer cylinder. At large diameter ratio, the total heat 

flow will be essentially that from a single horizontal cylinder in an infinite medium. 

    Fluids with larger Prandtle number will remain steady until larger Grashof number is attained. This 

is observed (Liu et.al. 1980) and (Charrier-Mojtabi 1979) and confirmed by the present numerical 

results. Fig.6 shows streamlines and isotherms at different Grashof number and diameter ratio with 

Prandtl around 0.7. 

The maximum stream function is about 15
o
 from the top with lower portion of annulus particularly 

stagnant. The vorticity approaching to zero in the central portion of the annulus, indicating the 

beginning of stationary core region. The center of rotation moved near the top as the Prandtl number 

increased. 

        Also, with further increase in Grashof number and increasing diameter ratio, the temperature 

distribution becomes distorted, resulting in an increase in mean Nusselt number. From a plot of 

streamlines and isotherms at Grashof number of 10
4
, the radial temperature inversion appears 

indicating the separation of the inner and outer cylinder thermal boundary layers which is obvious 

clearl at the top portion of  a=2.0. As the Grashof number increased further, the flow above the inner 

cylinder will become turbulent. This will create a turbulent boundary layer on the outer cylinder while 

the inner boundary layer remains laminar (Lis 1966).  

Eventually, the inner boundary layer will also become turbulent. An oscillating laminar flow 

regime begins near Grashof number of 10
5
. 

At low Prandtl number, the velocity profile at any one position is similar with the magnitude directly 

proportional to the Grashof number. The velocities are too small at low Grashof number and increases 

with increased Garshof number and Prandtle number causing the separation of inner and outer 

cylinder thermal boundary layer. 

        The velocity profile in the outer cylinder boundary layer in the top half of the annulus (30
0
 ≤ θ ≤ 

90
o
) are independent of angular position. As the fluid moves down past the 90

o
 position the outer 

boundary layer weakens, and disappears entirely near the bottom, see Fig.7, at high Grashof number. 

The velocities at the bottom of the annulus are very low compared to the velocities at the middle and 

top regions (Kuehn and Goldstein 1978). 
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 On the basis of the good agreement between numerical results of the present study and experimental 

and numerical results of previous work. It seems possible to determine heat transfer parameters free 

convection in enclosures using either method. The experiments have the advantage of being applicable 

to unsteady flow and turbulence, where the numerical computation becomes unstable. However, the 

numerical analysis gives more information, including the velocity vector, which is difficult to obtain 

experimentally. The error in numerical results arise from the constant property assumption, the finite 

number of grid of nodes and the convergence level of the solution though not perfect owing to the 

consideration mentioned above is quite good lending validity to results with previous work. 
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 Fig.7 Velocity vector for natural convection in an annulus at Pr=0.7 
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SUMMARY 

The numerical study of natural convection heat transfer and fluid flow between horizontal 

isothermal concentric cylinders has been presented. Quantities obtained numerically include 

temperature distribution, local and average Nusselt numbers. The numerical solutions confirm 

velocity distribution and extend results to lower Grashof numbers.. Numerical solutions covered the 

range of Grashof numbers from pure conduction to steady laminar boundary layer flow for R=1.2, 1.5, 

and 2.0. The flow was steady for all Grashof numbers investigated. The influence of diameter ratio 

and Prandtl number was determined. Good agreements with available previous published resultes. 
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NOMENCLATURE 

∆r    mesh interval in r-direction   

∆θ   mesh interval in θ-direction 

a     diameter ratio, radius ratio, ro/ri 

cp    specific heat at constant pressure 

g     gravitational acceleration  

Gr   Grashof number, g β (Th-Tc) ri
3
 /υ

2 

k     thermal conductivity 

Nu   local Nusselt number 

Pr   Prandtl number, υ/α 

r      radial distance 

R     dimensionless radial coordinate, r/ri 

Ra   Rayleigh number, Ra= Gr.Pr 

T     temperature 

U   dimensionless radial velocity, uri/ υ 

u   radial velocity 

V   dimensionless tangential velocity, vri/ υ 

v   tangential velocity 

 

GREEK SYMBOLS 

ψ    dimensionless stream function 

τ    dimensionless time, tυ/ ri
2 

ρ    fluid density 

α    thermal diffusivity,( k/ρ cp) 

β  thermal expansion coefficient of fluid 

Θ  dimensionless temperature, (T-Tc )/(Th-Tc) 

υ     kinematics viscosity 

Ω   dimensionless vorticity 

 

SUBSCRIPTS 

h,c hot and cold,  respectively 

i,o inner and outer, respectively 

 

SUPERSCRIPTS 

           mean 
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ABSTRACT 

A theoretical study of heat transfer and fluid flow phenomena in welding process has been 

carried out in the present work. The study involved the numerical solution of the transient Navier-

Stokes and Energy equations of the weld pool region by using Finite Difference Method. The 

electromagnetic force field and buoyancy were included in the formulation The stream-vorticity 

formulation was used in the mathematical model. The numerical solution is capable of calculating 

the vorticity, stream function, velocity, temperature, and the interface movement of the weld pool in 

Gas Metal Arc Welding (GMAW). The model can be used to solve the Gas Tungesten Arc Welding 

(GTAW) problem. A numerical calculations algorithm was developed to carry out the numerical 

solution. The numerical results showed that the finger penetration phenomena occurs in the Gas 

Metal Arc weld is adequately explained through the application of the model. It is found that the 

frequency of spray transfer is a dominant factor in addition to shape of the weld pool geometry. A 

verification of numerical results was made through a comparison with a previous work, the 

agreement was good, confirming the capability and reliability of the proposed numerical algorithm 

in calculating fluid flow and heat transfer in Gas Metal Arc weld pools.  
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INTRODUCTION 

The heat and fluid flow in the weld pool can significantly influence the pool geometry and the 

temperature gradients. A detailed knowledge of the temperature filed and thermally induced flow in 

a weld pool is important in understanding the phenomena and in development of improved welding 

techniques, and numerical simulations offer the possibility of  avoiding this difficulty and provide a 

better quantitative description of the coupled solution behavior. If we consider a molten weld pool 

resulting from an applied surface temperature or heat flux, the thermal gradients induce buoyancy 

forces in the weld pool that tend to cause fluid flow. It is of considerable practical interest to 

understand quantitatively the heat and fluid flow phenomena in weld pool, because both the 

velocity and temperature distributions of molten metal affect the weld pool geometry, 

microstructure, and mechanical properties of the weld produced. Inherent to the welding process is 

the formation of a pool of molten metal directly below the heat source. The shape of this molten 

pool is influenced by the flow of both heat and metal, with melting occurring ahead of the heat 

source and solidification behind it. Fluid flow in weld pool can strongly affect the quality of the 

resultant weld. Variations in the weld characteristics, which are likely to occur from changes in the 

weld pool fluid flow are weld penetration, undercutting, surface smoothness segregation pattern, 

gas porosity and solidification structure, (Gukan and Sundararajan. 2001), see Fig.1. The 

problem was investigated in literatures with different approaches, (Oreper and Szekely.1987) 

developed a general mathematical statement to describe the transient weld pool development. In the 

formulation, axi-symmetric systems are considered and allowance is made for buoyancy, surface 

tension, and electromagnetic forces. (Tsao and Wu.1988) developed a mathematical model to 

evaluate the effect of the electromagnetic force field, the velocity field and the temperature field in 

a Gas Metal Arc (GMA) weld pool. (Tsai and Kou. 1990) studied the convection flow induced by 

the electromagnetic force in the weld pool during gas tungsten arc welding. In order to accurately 

describe the boundary conditions, (Kim and Na. 1994) developed a computer simulation of three 

dimensional heat transfer and fluid flow in Gas Metal Arc (GMA) welding by considering the three 

driving forces for weld-pool convection. (Gukan, et. al. 2001) developed a systematic study of a 

two dimensional model to analyze the role of convection  in the stationary (GTA) welds to analyze 

the behavior of weld pool convection and its effect on the weld geometry. 

The present work represents the beginning of a new research line in Iraq that aims to 

investigate the thermal and fluid flow phenomena associated with welding process. A 

computational study of fluid flow and heat transfer phenomena occurred in the weld pool. The 

simulation covers the molten phase, the two phase and the solid phase region. 

 

MATHEMATICAL MODEL 

Fig.2 shows a diagram of a Gas Metal Arc (GMA) liquid pool and the cylindrical coordinate 

system chosen for analysis. Velocities along the radial and axial directions are expressed as U and 

V, respectively. A spatially distributed heat flux, q(r), and current flux, j(r), fall on the free surface 

at (Z = 0), which is the surface of the workpiece, the energy exchange between the spray droplets 

and molten pool is ∆H.As shown in Fig.2, let U=U(r,z) and V=V(r,z) denote the velocity 

components in the radial r and axial z directions, respectively. The unsteady-state continuity, 

momentum and energy equation of the incompressible fluid in the molten pool is (Salah. 2005) ; 
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Using the vorticity transport formulation (Salah 2005), it can be shown that ; 

 

 

 

 

The stream function equation is ; 

  
 

 

The temperature equation in the conservative form is ; 

 

 
 

The electromagnetic force term in equ.(5) is (Tsao and Wu 1988) ; 

  
 

 

 

and the energy exchange (∆H) is ; 

 

 

 

Initial and Boundary Conditions Representations 

The initial conditions used to solve temperature, vorticity and stream function equations are ; 

Ti , j = wi , j = ψi , j = Vi , j = 0  at  t=0 

The boundary conditions used are given in Fig.3 .  

 

NUMERICAL SOLUTION 

The governing equations mentioned above were solved numerically by using the FDM. A grid 

arrangement was generated with the notation of Fig.4. The temperature of each grid point in 

weldment is compared with the melting temperature Tm. Once the liquid region emerges, the fluid 

flow and heat transfer in the weld pool and the heat conduction out of the molten pool are 

calculated. 
 

The nodal equation at i=1 ; 1 ≤ j ≤ M  

 

 

 

The nodal equation at i=1 ;  j =1 

 

 

 

 

The nodal equation at 2 ≤ i ≤ R/∆r+1 (i.e r=R) 
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At i=1 ;  j =1 

 

 

 

 

 

 

 

At i=1 ;  j =M 

 

 

 

 

 

 

At i=1 ;  JFL < j < M 
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At  i=N ; j=M 

 

 

 

 

 

 

At  1< i < N ; j=M 

 

 

 

 

 

 

At  i = N ; 1< j < M 

 

 

 

 

 

 

At  1< i < IFL (j) ; 1< i < IFL 

 

 

 

 

 
 

 

The temperature equation in weld pool ; 
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The electromagnetic force field in the vorticity equation ;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

The temperature equation at the centerline as ; 
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Where ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The vorticity equation at centerline ; 
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The stream function for the next iteration (m+1) ;  

 

 

 

 

 

From (Petrovic and Stuper. 1996) ; 
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The radial and vertical velocities ;  

 

 

 

 

Calculation of the Vertical Velocity at Centerline from (Chow.1979) ; 

 

 

 

 

 

RESULTS AND DISCUSSIONS 

Fig.5 shows the computed isotherms and convection patterns in the pool of the weld to 

account for convection and temperature distribution in moving weld pools driven by buoyancy and 

electromagnetic forces at times (0.1, 0.3, 0.5 and 0.75 seconds). As time passes, the molten pool 

increases for MIG welding process. The deep penetration is observed in the figure. The liquidus 

temperature is 1440°C and the solidus 1000°C. Fig.6 shows the computed stream function in the 

case of combined buoyancy and electromagnetically driven flow of the weld pool at times (0.1, 0.3, 

0.5 and 0.75 seconds), respectively. As time passes, the molten pool increases. Fig.7 shows a strong 

counterclockwise circulation pattern, with very high velocities, which is dominated by the 

combined effect of the buoyancy and electromagnetically driven flow components. The weld pool 

shape, involving deep penetration, is consistent with the circulation pattern, (0.1, 0.3, 0.5 and 0.75 

seconds), and the large the weld pool. It is this transfer of additional heat from the metal droplets 

(∆H) in the GMA process which plays a very important role in the formation of the finger 

penetration in the GMA welds. This phenomenon is not present in the GTAW process. Figs.8 and 9 

show the interface between the molten pool and the solid region at different times (0.1, 0.5, 0.75 

and 1 seconds) respectively during MIG and TIG welding processes. A comparison between the 

calculated numerical results of the present work and the results of TSAO and Wu (1988) will be 

made for verification. Some results were selected in order to check the model. Figures (8) and (9) of 

the present work may be compared with Figs 10 and 11 of (TSAO and Wu 1988) for GMA and 

TIG results. The comparison show good qualitative and quantitative agreement.  

 

 

CONCLUSIONS 

A numerical study of heat transfer and fluid flow phenomena in welding process has been 

carried out in the present work. The weld pool size in GMA welding increases at a faster rate at 

small times (0.1 – 0.3 Sec.) and the stream function at times 0.1 sec and 0.3 sec appear increasing in 

the (r) and (z) directions. Two circulation loops in the weld pool appears one near the free surface 

and the other in the bulk weld pool, the maximum velocity which occurs at the free surface. And the 

flow at the free surface is radially outward from the (z) axis to the pool boundary.  
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Fig. (1): Schematic Representation of Gas Tungsten arc Weld 

     Phenomena (Gukan and Sundararajan 2001). 

Fig. (2): Sketch the weldment of GMAW 
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Fig. (4) The Nodal Points Used in Numerical Solution 

Fig.(3): Nodes Equations of the Numerical grid arrangement of weldment using 

temperature distribution , pool temperature distribution and boundary 

conditions used in calculations 
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Fig. (5): Calculated Temperature Distribution at Different Times in GMA Weld Pool. 
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Fig.(6): Calculated Stream Function Contours in GMA Weld Pool at Different Times. 
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Fig.(7): Calculated Velocity Distribution in GMA Weld Pool at Different Times. 
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Fig.(8): Calculated Liquid – Solid Interface of GMA Welding 

With Same Heat Input at Different Times.  

Fig.(9): Calculated Liquid – Solid interface of TIG Welding 

With Same Heat Input at Different Times. 
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Fig.(10):  Liquid – Solid Interface of GMA Welding   
                     Ref.(Tsao and Wu 1988) 

Fig.(11): Comparison of GMA and TIG weld Pool Boundaries 

with the Same Heat Input Ref.(Tsao and Wu 1988) 
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NOMENCLATURE 
 

Latin Symbols  
 

Symbol Definition Unit 

Co Length scale factor if scale uses in mm=10
6 

 
g Acceleration of gravity  mm/sec

2 

h Convection heat transfer coefficient  J/mm
2
. sec.°C 

H Length of plate  mm 

i Finite difference index in the r-direction   
I Welding current  Ampere 

IFL Index of fusion limit in r-direction.   

j Finite difference index in the z-direction  
j(r) Welding current distribution at the plane (z=0)  Amp/mm

2 

JFL  Index of fusion limit in z-direction.  

KL Thermal conductivity of liquid metal  W/mm.°C 

Ks Thermal conductivity of solid metal  W/mm.°C 

L Thickness of work piece  mm 

M Number of grid in z-direction   
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N Number of grid in r-direction   

Nr Number of grid in r-direction of weld pool   
Nz Number of grid in z-direction of weld pool   

q(r) Heat flux on the plane at z=0  J/mm
2
 

Q Heat input per unit time  W 

r Cylindrical coordinates.  mm 

T Temperature in x-y coordinates, also temperature of weldment.    °C 

Ta Ambient temperature  °C 

Ti Initial temperature  °C 

Tm Melting temperature  °C 

Ts Solid temperature  °C 

U Velocity in radial direction (r)  mm/sec 

Ub Average back velocity in r-direction  mm/sec 

Ub 0 Average back velocity at center line  mm/sec 

Uf Average front velocity in r-direction  mm/sec 

Uf 0 Average front velocity at center line  mm/sec 

V Velocity in axial direction (z) mm/sec 

V Voltage duty  Volts  

Vb Average back velocity in z-direction mm/sec 

Vb 0 Average back velocity at center line mm/sec 

Vf Average front velocity in z-direction mm/sec 

Vf 0 Average front velocity at center line  mm/sec 

W Width of plate also width of workpiece.  mm 

z Cylindrical coordinate   mm 

 

GREEK SYMBOLS 

Symbol Definition Unit 

αL Thermal diffusivity of molten metal  mm
2
/sec 

αS Thermal diffusivity of solid metal  mm
2
/sec 

β Coefficient of thermal expansion (exposivity)  1/k 

∆H Heat transferred into weld pool by molten filler droplets  w/mm
-3 

∆r Step size in r-direction  mm 

∆z Step size in z-direction  mm 

η Heat input efficiency   

µ Dynamic viscosity  kg/mm.sec 

µ0 Magnetic permeability of free space H/mm 

υ Kinematic viscosity  mm
2
/sec 

ρ1 Density of welding wire  Kg/mm
3 

ρ2 Density of  filler droplet   Kg/mm
3 

σ Surface tension  N/mm 

σj Current distribution parameter  Amp/mm
2 

σq Heat flux distribution parameter  w/mm
2 

ψ Stream function  M
3
/sec 

Ω Successive over relaxation parameter   

ΩOPT Optimum successive over relaxation parameter   

ω Vorticity  1/sec 

ƒ Spray transfer frequency  HZ 
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(Fractal Dimension/ D) ���
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ABSTRACT 

 It is possible to infer some facts by capturing them directly or trying to trace their evolutions 

and changes mentally. This will guarantee human beings a sort of self-confidence, control and power. 

Some sustained patterns of natural, biological and human artifacts provide trusty physical and 

objective proofs on their success and survive. 
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 The research claims that the secret beyond the success of these patterns lies in ambiguous or 

hidden or invisible orders within the seeming randomness and complexity. Successful systems reflect 

distinguishable order when they reach a critical threshold of stability and self-organizing between 

their trends to connect and to compact. Then, patterns can reveal themselves and express their similar 

structural and morphological changes. In the same manner, guiding other systems to reach such edges 

and thresholds may ensure having successful patterns, solving serious problems and leading the way 

ahead correctly. 

 The research depends on a new mathematical tool from the Fractal Geometry to reveal and 

measure the hidden orders in these patterns by calculating the repetitions of form's changes. This tool 

could be defined as a Fractal Dimension (D), which is considered to be a sensitive index or parameter 

of the system's behaviors. 

 Also, the research adopts the comparative analysis method of analyze and measure the form of 

a trusty successful, natural and sustained pattern of a fruit trees orchard, trying to find a numerical 

order by calculating its fractal dimension. The obtained fractal dimension represents a referential base 

in analyzing some patterns of urban systems (e.g. Baghdad's two dimensional image), a reliable index 

and parameter to detect the system's behaviors and trends to connect or to compact. 

  Comparing the pattern of an existing urban fabric for the city of Baghdad with the orchard's 

pattern refers to an obvious defect in the inner structure and morphology of the capital. Baghdad tends 

to connect rather than to compact in a pathological way. The research ends with the need for urgent 

and careful interference to tune the parameters of connectivity and compactivity equally by suitable 

and practical suggestions and recommendations.     
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   8A$:�� ���5�(Chaos Theory)'   �
�9<��� $
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 =B� ##��)1( :=���� >:��:�� >0�*��� �������.  

   ?�� 8A$:�� ���5� L�A�& ��0 M���(Chaos Theory)  /�A�� %��
 ��0�*� J������ �	)�) F���H�
 F����(Free Will)   >��	
�� =�
5���� '(Self-Organizing)  �
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5��:% #���	�+ 5��%� 	�<� (��,� �% � �1 � �� �% '�	&�� L���� 5��	�+ (�%�3� ��" 4����� ")Davies, 

The Cosmic Blueprint, p: 73( . 9���%4����� ��>����    �.� 9.���� ��%����% (� �<�� L�	�$ ���, �� �	��	���
  (���%.0� �� %��� 	��* �	>��$% G����)Gleick, Chaos: Making a New Science, p: 32( .  �%	.��% �.������ 

��%� �	����� ��� 9����� ����� #3�� 9�� '���
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 (���  � 	�
%)(���6 ���(   (.��	  �.��% L�%��� %��� �; �	��1% ')Wahl, Exploring Fractals on the 

Macintosh, p: 2(.  
   ��9<��� $
 ����2�� ����)�� �$����$(Fractal Geometry) ���B&���    >
��0 �
�*#� �
���*�0�* '��

   =�
��� >0�
*��� ��
������ �)0�A�& ��0 ��*���� ��:��:�� ����0�*� �*��� %��
 D��0�*� '8A$:�� ���5�� .
 ��0�*��� ;	� /�A��$) =�5��&���(Irregularity) ���2��� '(Repetition) #���� '(Order)  �����$(Pattern) (

D�A�
 >��$��� 8�0 .�	>��$?�	* ��5����H� W��6% (����� 1��� D  ."     	$
:� �
��*�� ;	
)�$ '�
��* O��:�� /&
D����� ��24�� 8�0 F$#�$" )     (.������ (.������ 4.* 4.������� X����� (��� (�6%6+ (��	 0$ '@�%<����

(��?�H� :P '(�%&���% �	>��� 5	3��:5 .( ��0�%��� ��� ��� (�:���� (�>�Y� (�%��� (���� (���	; ��� P	6
�%3%��� ��:��� ����* �%� 5?U+���� . ���% �	<�� �; �	>��� �Z* '�	>��� (;	, �%&�% ���  �+���� �	  ��$ 	�1
 �	�	�� (&��+� X�	��� �+[ �	>� #���)P '�?�H� 4* ��/� L�	�� '�� 1 :355 .( �%	��% 	� ,����  D����

���� ���, �� M�� �% � �;% 'D%�*%��* G��� '���
���  4.� �� G��)Moughtin, Urbanism in Britain, p: 

31( . �)%�%����� 4�%"%� \� 0� �"� ]�6� 2̂%�% Ĉ	�� . ���	���� D �� �1 � ��%(Traditions)   �	;	.��1
 (��	��3$ �	��1 �� 9%�%� %
	� �����% ���,�� (�%	�� 4* L	 	���� ����� @%; R	��$ ��"�� 4<* '()��%��

�� (����% (������% L:��)P '(��?�H� (������ (������ '�%��<�� :3Q4 .(   _��.�/� D. �� 	����(Norms) 
 	<��" _�6���% L���-� �� 1 (��� B��� �%���� �� (��	��� (����)     '�?.�H� 4.* ��/� L�	.�� '�.� 1

P:432Q433 .(  
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 ������1� $
 ��#�*��1�(CONNECTIVITY) 7�����$ '(COMPACTIVITY) �5��� > ����� �:  
  9���� I�� �#�*��1� /��  C��$���$ �����1�$ =$�)�� =�5��� P�	 �0<� $
 ��� /0 ��*�� ������1� $


 ���� � �� $
 �� 8�� "�$�$ ��0 $����$(Critical Threshold) Q��� J2���$ '7�����$ 5�5�21� /� .
�� %1 5	,	����� J��3 ����1 G	��� ����� %1 (�:��� 8�
 D	��% 5�	6�(Number of connections/ N) 

�	>��� M�� 5	��% �% R�:31 �  ��� L�0	����% (������� . 	�17�����  ��:�+��% W	*��� 5	���[ I��$ %<*
(���� (�>�/� J��3 	<����̀ 4��� (�%	����% . 5�	6��� %1 5	,	����� J��3 ��%,1 G	��� 	<����� � ��%

(Lengths of connections/ L) ��� � �%� (� ���� . ��� ����� ��� ���� 	<���3 (�>�/� �1 _%����� ��%
 M�<��7�% _�67� 	� ��� �	>	&�% '	<�6��� L�	�:� � �� �� ���1 ��� 	<��:31 ��� 5�	6��� %1 5	,	�����

 	<�	;	, ��(Energies)������� �	6���% ,	����� ��� 9�)��� 	<��� ��	�� '.  
    6� /
 $�*�$�2��4� ������$ ������ �$�� '=�0 R�24* '��5� . �����1�$ ��4��1�$ C��$��� 8��� S	&

   F��
0&$ 7��
���$ L� ��� ������ �0<�$ ��� �*��� E��$����� /� ��<�� D�*�# >������ #�*��1�$ ����1�$
�)��B�# 8�0 D�5�:� >��	�� =�5����$ ��2�)�� . $
 �
)��#�*��� ��0 F���< �$��� >)    �)�1�
���(Number of 

Connections/ (N) as an index of Connectivity)     E�
#�*��1� ;	
� ��$
#
 �����$ '/2�� �� 8�B
 8��
(Lengths of these Connections/ (L) as an index of Compactivity)  ���� 8�� D1$�$ '/2�� �� 8��
 8��

/�<�1�$ ������1� /�.  
  

 �����(PATTERN)($� 'F����� >0$A$� ��:  
                 �����(Pattern)  �*0 D����� ;��*��& =� '�� G��24�� ,T4T�S2.� U�� $�)/�2���V /��<�� ( G,$�5 E��$

�T2T�W*.� $
 WL-�T�S�.� =� $)  '"���� TE.*T($ �:���� .�� 8�� ����* ����
 $
 F�:4 /$2� �B$ .   ��
���� �
(��$
 D�#���
$ GE���5��&(Orders) D��B����  ?$���� XF��2���� ?��$��� ��($�$ ����� /0 D����� P$���� D�(��$�� $


  ,$�
5�� ,���� E��)Salingaros, The Laws of architecture from Physicist's Perspective, p: 5(.  /&
�	�� =�5����$ /�<�1� /� ���� 8�� �)�$�$ �5�� D�<���� D�#�� J2�� '������0�* '������� ��5���  C�#�
�� '>�

 ����� /0 ��*��$ ����� ,42� /
 '���$ �$� ��9�$40 �)�Y* $�*� >���$ '��5������ ���24�� �)B���
 ����0
�)*�4�� ���$�$ �$�$ ��$��* E������ /� �)���� @��� ��.   �
�Z =�5� @Y* �$�$�� $
 L$���� ��$���*$

 ������ E� ���� $
 �$���� ;	� �(� 8��(Steady states or critical edges)  $
 "
� � $
 "��<��� ���# /0 '
     �
�9�B GE�2
4�� �$
�� =��
��$ '����� G����
 [��24
 8�0 �$���� "� /�A� /
 C�#��� '")��$� 8��

\�����$ /���� �* $�� =�5��� P�	 �$�� '����B R������ E���$�$.  
  �5�� "B���
 ���*# >  >� >2������ =�5� @
 \��� ?�*�� $<��$   �
��� � �� $
 �� 8�� "�$�$

%��
 �)� /� 7����� "���$ '�)� /� ����1�$ #�*���� "��� ����0 "*�4��$ '=�5��� �)�  /<�� . ������ 
  >
9<��� $
 @��2�� ����* ?�� /� �)*�4�� #���Y* ������ ����2 ��24
 E�	 �2��� =A� �������(Fractal 



 

�
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Dimension/ D) �*�� ;	�$ '@���B&��� /� ����B�� ���� ��)1( ≈D.  @���B&��� >9<��� $
 @��2�� ��*�� /�
 ������1� $
 ��#�*��H� $�� "�$��$ "2$��$ =�5��� ����� J��� ��4]� $�(Connectivity)  7����� 8�� $


(Compactivity) .  
  

?�*�� ���)��:  
   ��	���� ������� G%��1 9���� ����(Comparative analysis)    �.���� D�.���% ����� ��� �	����	�

 �%)%� \� 0� ������% �:��% B3	� 4�	��1 C�%��� 4� 0��)�%��:�� �	���(  �.� #��" 	� 4�;� ,�� �	3�H '
@���;$?�� 4�:3�� %1 @�� �� 8��7� G	���$ ���, . W%3��� � �� D	���  ��7��� ��
 ��� �	"�1 9���� �����%

����� ��� #��$  (��"��� (�>�/� 	<��% '(��	��� (�>�/� ��� �	��1)�?)� ���
� (���� ( (�	� ��� �����?� '
P����� %1  �	6���% ,	���?� R�%� #�%��% #�	� %��% �	>��� M��.  

/���*�� ��:  
   %.��:�� �	301 ��� (��)% (;?�� 4���, 4 %�� ��� �� �	�<� ��	)�% �	3�%�� 8	��1 9���� ������ �

�	30/� 8�
 ��� �U&,��� �%	�� 4��� L��	"�� (����� 5��0�% '�	��� 4* (�%�:��� . ��%���� D&� 5��*) ��
�	����� /The Mystery of Orchard( ��% 5��� G�  '(Bernt Wahl)  (�&6�� 4*)5 (  #.�	�  ��(Exploring 

Fractals on the Macintosh) �?�	; '"&�� �	�
��� �� (�%�3� 5�	;  G.��3�� �0� D�	+�� ����� 4* ������
#�* �%��:�� �	301 �� ��� �� 1 ��� �%6��� (�
� �<� �	��� (���: . �	����� (�	�� �  (������ 4* �%U�
��	*

(�%	��� 5	*	���% _%&6 4* �	30/� (���:� .  ��.� �� 1 (���: ��� �
��	� �; M�� �1 �� ����� ���%
�; M�� �$ �$ '�	30/� �� � ��   �.�� L�30 �� �	���H� ��� L�	"��% ( 	U�&�� (����� 5��0� ��	���	� ��	�

���% =(�%<�� �+[ ��� _6 ��% I�+1 .��	 �	� �	����� �����% %:� �� 4�	��	�% .  8�.
 �� �	�
��� �%	�*
	<3	�� �) 	
��� ����� G	�� ��� ��� �� 	<"�� �	30/� L��	��� (� 0��� . %.
 ��A���% :   �. �� _.� 

�  �.�	�� �	301 ��� �) 1% �	����� (�	��� ���+��$ ���1 ��"� �	30Y� ��� ���1 ��� �%��6%�� �1 �	�
��
���/� ���� ��� L�	"�� (����� 5��0� ��)N� ����� . 4* G�%3�� �	  ��* '(0
���%  �
�� 8�� D��*���� ���$���

(Pattern) � ,�$�� �*�B ��^$ D�A��^ _�5 '>9<� $
 @��2 �24 $	 J�
���� $
 ��B�� ")Wahl, Exploring 

Fractals on the Macintosh, p: 13( . � 0�� �>�1)1 (8	��1.  
   ���%;% R@�	�� �� #�* 8:���� �1 � �� 	� �	3�$ �� :3�� �; 	��Z* '�?�%, ����� ��<� ������� ���%

%1 C������ %1 �>	���� %1 G�	���	  J��3�� (*%��� (������ (����
 ���	��% ��	����...S�� . 9���� ��&��� _%�%
 (����;$?�� (���<�� 5	�%�, ��� ��(Fractal Geometry)  �� �	�	�� _��+� �	>���% 9���� 4* L���3��

 	� %
 	<&6%� � �7� 	� �;1% '(�
% b�%1 �� �	���� (�"�% %��� � �; '����� ��
 ��" =L���3 =(�6	+
�� %1 (��� �	� �	��	� #��� 	���,6� (��:3(Fractality) . �>��� ��� ����� ��
 � 0*(Irregular)  ��� ���
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�	>��$ ?� (�0�0��% L��� �� (��+���� #�?�6&�% #�	��,��% (�3�	+�� 8�%��% 'D	����� ���
� . �1 �c�d�7� �<*
 �	��	) ���	��� ����� ��
 ���"��)#����� � �� (�� �	301 _	&,6� �1 �
% e8��� �� #� :����� ����� ��<� �%��:

e���
�� � �	��	  �	,�� ��"��  

  

  
 =B� �24)1 :("�0��< ����
 >  /�2� /���*�� ��.  

)��6��� :12(�&6 ' :5(  
   �� ("	����	� ��%1 ����� 1�����	30/�  � 0�� 4* B�"%� 	�  '�	�	�� 	<��;��% ���%��)2 (8	��1:  

  
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47  
 =B� �24)2 :(/$��<�� /���* >  D�0�*� ���4�� =�B��� `	$��.  

)��6��� :9�	���(  
   ,���� '��������% (�%����� ��� 8��	� �:U��% ��	 �� 4�	��1 �	>�� :	��� �	����� �1 D	�1 ���%

 ,����% �6�� �%��: L�30 �  �Z* 'L���% =L��% 4* � �	� #�* R:3 � (connect)  �%��:�� �	301 J��3�
 L������ : �� ��� ���	���� 'L�� �� �) / ,	���� %1 �	6�� @1 ��� � ��� (>�?� J� 'R	�)��� �%�

 �;� � 0�� �>�1 '����	� ��)���� ��� �	30/� �� �����  (�"���*��)3 (8	��1.  
  

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47  
 =B� �24)3 :( #�*��� F�2:� Q�A$� =�5��� a�<�
 /� a<� �2)/$��<�� /���* ( �24* ��
 '"9�<�
 ���**

F���$ F�� /� �(2� #�*��1� ���2� <$�� 1 ?�� '�4�*� ��^ R�24* $
 �4�*�.  
)��6��� :9�	���(  

 �	;�/	� �	30/� J� ���0	�� �% � '�	)��� ���� ���    (�,	���� �$(Connectivity)  �.;� L�30��(1) '



 

�
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(2,11,12,13,14,15,16,17,20,21,22,24,25,26,27,28,29,30,32,33,34,35,36,39,41,42,44,45,46) �% � 	���� '
   �	.;�/	� �	3.0/� J� ���0	�� ���(3,4,5,6,7,8,9,10,18,19,23,31,37,38,40,43,47) .    ��.� 	��.�� ��Z.*

 L�0	���� 5�	6��� %1 5	,	�����(Number of connections/ N)  �;� L�30�(1)  �	 (29)  �1 @1 '�	,	����
(N=29) .R�:3/� (��� 5	,	���� ��� G	�� ��" 	<�	���� ���* L�0	���� ��� 5	,	����� 	�1 . ,	����� �?)�*

 �;� L�30 ���(1)  �;� L�30%(18)  �;� L�30 ���, �� ���% '�0	�� ��� �% �(13)  ... �	6���% '�� 
%
 �;� L�30 ���(13)  �;� L�30%(18)  �;� L�30 5	,	���� ��" G�̂d�7�% ���0	�� �% ��(13)  �% �� 4���%
 	<�	,	���� ���(N=27) �;� � 0�� 4* B"%� 	� % ')3 .( L�0	���� 5�	6��� %1 5	,	����� ��� ��� �	07�%

(Number of connections/ N)  (��	6��� %1 (�,	����	�(Connectivity)  (.�:� %1 ��� �� ����� 4���% ' @1
    (.3�� (.*	� %1 �.� ��� #�%6% ��� %����% J��%���% �	0����% �����?� �	>�(Critical Threshold)   �.�

 P�����% 4����� ��>����% >	>� ��(Compactivity)B��6 D ���% '.  P����� 	�1(Compactivity)  I��$ %<*
� �f��̂7� �1 � ��% '4����� ��>���� %1 2?6H� %1 W	*��� 5	��[     (.�� �� 5�	.6��� %1 5	.,	����� �%.,� #�

 L�0	����(Lengths of connections/ L).  
     5�	.6��� %1 5	.,	����� ��%,1 5�	���$ J��3 (�%<��% G��� �1 �	����� (�	� 4* � ��%(L) .

 ����� ��<� �	30/� _	&,6�% G����*(Pattern) ��;� \� 0�% G	���� 	�� B��� .   .0 �.� B"�% %
 	� * �
 �;� L�30 ��� (�,	����� �Z* '�����(1)  �;� L�30%(2)  @1 'L���% �%, L��% @%	��(L=1) L�30 ���% '

 �;�(1)  �;� L�30%(11)  �;� L�30 %1(13)  @%	��)2( =L  �.;� L�30 ���% 'D�%�	)�* L��	; ���,�� '
(1)  �;� L�30%(14)  �;� L�30 %1(17)  @%	��)5( =L �;� L�30 ���% '(1)  �;� L�30%(30)  L�30 %1

 �;�(32)  @%	��)17( =L ...�� 
%.  5	�	�� ��	  R��3$ �� X���%) �%��:�� �	301 ��� 5	,	����� ���
(N) 5	,	����� 8�
 ��%,1% '(L)( �;� �%�3�� ')1 (8	��1:  

  

 =B� �$��)1 :( �����:��� E�*����� E1���1� $
 E�#�*��1� ����(N) �)��$#
$ '(L) >  '�����*/.  
Lengths of Connections (L) No. of Connections (N) Assumed Location No. of each tree 

165.811 29 1 
160.268 30 2 
135.232 27 3 
123.114 28 4 
110.09 26 5 

146.852 31 6 
155.002 31 7 
150.217 28 8 
163.392 29 9 
180.561 27 10 
195.507 28 11 

149.723 26 12 

137.485 27 13 
122.847 26 14 
95.642 24 15 

112.031 25 16 
134.115 20 17 
90.134 20 18 
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75.855 20 19 
72.008 19 20 
68.233 18 21 
80.105 19 22 
83.646 18 23 
86.562 18 24 
104.47 18 25 

112.001 18 26 
63.086 18 27 
64.69 17 28 

63.795 14 29 
53.675 9 30 
46.458 9 31 

40.212 9 32 

34.757 9 33 
32.487 9 34 
25.294 9 35 
26.723 9 36 

29.171 9 37 
33.212 9 38 
37.872 8 39 

2 1 40 
2 1 41 
1 1 42 

1 1 43 

2 1 44 
1 1 45 
1 1 46 
0 0 47 

3772.335 775 47 TOTAL 

  

   	<���3 �	>��� R�:3/ 	<�  �	6���% ,	����� 5	���� ��)�� ���%)	<���3 �%��:�� �	301( 	���� X��� '
 �;� � 0��)4 (8	��1:  

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22 23 24 25

26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

SCALING RATIO (r)
No. OF CONNECTIONS (N)

LENGTHS OF CONNECTIONS (L)

120

=120/120=1
=776

=3773.719  
 =B� �24)4 :(�)���� /$��<�� /���* ���4
 /�* �)�2 ����1�$ #�*��1� E������ >A��� & ��(��.  

)��6���: 9�	���(  
   #��� �$ ��� '(�
% �%/% 'X�	��� � 0�� �>��� ��� %���%(Pattern) ������� (�	� 4* %
 . 	�� � �� �%

 ,�� �%3%� ��%�/� �� �	� @N� �:3��(Order) #��" ��	  .   �.��
�� �%.�� '9���� 5	�"�* �� ������%
 D	�����(Scaling ratio/ r) ���$ �	�%��� �0� 4�)$ 4* �	��%,  �.� gR�)

12

1
( =r   �.))

12

2
( =r  %)

12

3
( =r ...

 @%����	� gR	<���%)1
12

12
( ==r . 5�	6��� %1 5	,	����� ��� 4* 5	� ����� G���%(N) 	<��%,1% '(L)  � �



 

�
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@%��� . @%����� �"� '�?)�*)
12

1
( =r 	30/� �	;�/	� �(10,25,39,47)   @%�.���� �."� 	���� ')

12

2
( =r 

 �	30/� 	<� �	*	"� ��	��� @%����� �	301(9,24,38,46) .  (.�� �� 5�	6��� %1 5	,	����� ����1 G��� �)
(N) 	<��%,1% '(L)   �1 9.�� '@%��� � �(N=54, L=322.903)    @%�.���� 4.*)

12

1
( =r'  �1%(N=111, 

L=607.069)  @%����� 4*)
12

2
( =r ...�� 
% . ��� 0�� �>�1)5( ')6 (   �. 	�
 5�� ��	 .01 �	� �� ������

	
:���� 	� ��� �	��6� _%;%�� 	<�� G�6� L��� ��% (3�����% (�0�0�� (��� .  
  

2 3 4 5 6 7 8 9 10

13 14 15 16

18 19 20 21 22 23 24 25

27 28 29

32 33 34 35 36 37 38 39

41 42 43 44 45 46 47

SCALING RATIO (r)

No. OF CONNECTIONS (N)

LENGTHS OF CONNECTIONS (L)

100

=100/120

=635

=2913.015  
 =B� �24)5 :(*��1� ��0 ���� E1���1� $
 E�#�(N) ���2�� �)��$#
$ '(L)  ����0 /���*�� ����

)
12

10
( =r.  

3 4 5 6 7 8 9 10

14 15 16

18 19 20 21 22 23 24 25

27 28 29

33 34 35 36 37 38 39

41 42 43 44 45 46 47

SCALING RATIO (r)

No. OF CONNECTIONS (N)

LENGTHS OF CONNECTIONS (L)

90

=90/120

=569

=2575.072  
 =B� �24)6 :( E1���1� $
 E�#�*��1� ��0 ����(N) ���2�� �)��$#
$ '(L)  ����0 /���*�� ����

)
12

9
( =r.  

  �;� �%�3�� B"%�% 	�  )2 ( (�� �� 5	�	���� 8	��1   5�	.6��� %1 5	.,	����� ���� (���6&���(N) '
 	<��%,1%(L)  D	����� ���
� 5	�%��� J��3� (�� �����(r) �0� 4�)�� . �;� �%�3�� �h<i>7� ��	���	�%)3 ( �����

5	�	���� 8�<� (�����	�%���.  
 =B� �$��)2 :(�*��1� ���� �����:��� ���2�� E�*����� E�#(N)  �)��$#
$(L)  �40 >�(� �*0 =2���� R�24*

 J������ ����� E��$��� /� D��$���(r) /$��<�� /���* > .  
12 11 10 9 8 7 6 5 4 3 2 1  
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Scaling Ratio (r) 
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1
9
 

Lengths of 

Connections (L) 
  

 =B� �$��)3 :( E�#�*��1� ���� ����2�� �������^$��� =����(N)  �)��$#
$(L) (� �*0 =2���� R�24* �40 >�
 J������ ����� E��$��� /� D��$���(r) /$��<�� /���* >  @���B&��� >9<��� $
 @��2�� ��*�� ���� C�.  

F
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a
l 
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  ��� (;?��� ��)�� ���% ��� (�����	�%(log(r))  J�(log(N))  �) '(<3 ��(log(r))  J�(log(L))  =(<3 ��
 ��� 0�� ��� P�+� '(���	 ���� 5	�)���H� ��� I�+1)7( ')8 (4��%��� ���:  

y = 1.0676x + 2.9049

log(r)

lo
g

(N
)

  
 =B� �24)7 :( J������ ������ �������^$��� =���� /�* �B����(log(r)) �^$��� =����$ ������ ������

 E1���1� $
 E�#�*��1� ��0(log(N)) ����#� /$2� /$��<�� /���* > .  

y = 0.9627x + 3.5526

Log (r)

L
o

g
 (

L
)

  
 =B� �24)8 :( J������ ������ �������^$��� =���� /�* �B����(log(r))  ������ �������^$��� =����$
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 E1���1� $
 E�#�*��1� ��$#
(log(L)) D�A�
 ����#� /$2� /$��<�� /���* > .  
     D	.����� �.��
�� (�����	�%��� ����� ��� (;?��� �Z* '4��	 ���� ��)���� �� B"�% %
 	� %(log(r)) '

 5�	6��� %1 5	,	����� ��� ���
�� (�����	�%��� �����%(log(N))   	.<��%,1% '(<3 ��(log(L))    (.<3 �.�
 (�,+ (;?� 4
 'I�+1)(���, (  #�	.0�� =,���)   �.���� �1 9.��(Slope)      @%	.�� �.�%/� (.�	��� 4.*

)067.1( ≈Slope  (��	)�� (�	��� 4*%)963.0( ≈Slope (  @�.��;$?�� 4�:3�� %1 @�� �� ����� �U)�� 	�
 �����%
(Fractal Dimension/ D) . /
 /� "��& ��*�	 �� ���]� �	�$)� =A� ������� ������  ���
�2 ��24
 E�	 �2��

�)����� ����� ��0 @���B&��� >9<��� $
 @��2�� ����.* ?�� /� �)*�4�� #���Y* ������.(  
     Q����� >9���1� =�5��� �	� ��� /
 QA�� �*� ���$)/$��<�� /���* ( ����� ����1�$ #�*��1� $��

7����� "��� .�� /�<�1� /� ����$ `�� �� 8�� ��$ �B "�
 @
 C��$���$ =$�)��$ $���� 8�0 "���B /�*
� '>������ =�5����$ 7�����$ P������ 8�0 "���*�B /�*��$ '�����1�$@��2�� ��*�� �)�2�.  

  

����* ������ @�A��� =�5��� ��� �����:  
  4�*/� J��%���% �����?� =(�:�% \���� (�;����� ����� �>�� �	� 	<�	� '���
� (�6	��� :	��� . �;% D ��

(�+	�� %1 (��	6�;� %1 (��	��3� %1 (�,�,+� I�+1% '(����0� 	<�� 5��0A� L�� ��
 ...  4.* M�� �
	� �;%
 4����� ���,��� 	
�	��+� ���(as a case study)      5��.�	� 4.�*/� 	.<,,+� �.�� �	�����% '9���� ��
 4*

�)���� 5������� I��Z  �̂j �̀ �; M�� �1 �� ����� ��� '���,���(.  
         (��	�6�� �	�;/� ���, �� L�%+N� (�%3 L�%6 ��� D	�/	� �	����� �� �;%(Satellite)  �	� J;�%�

 �	��� ���
� (����)2004 .( �	 %�%/� X�	��� ���,� �� @%�� M�� � ���+��� ��%(Auto-CAD)    (.���� �.���
 ���
�)	<+�� (�%�� (��6/� 	<��%6 ��6	&�% R�:31 J��3 �%* 40��	�   X�	.����� ��.
 (���	; �� L�	&���	� �	

      �	��.6� G.������ �.�� ���	.���� (.��	� =(�%��% =(�%<�� 5����
���� G	��% D	����� ���
� ���(Visual 

approximation) . ��� 0�� �>�1)9( ')10.(   

  
 =B� �24)9 :(* ����� ��� CB�$� ��0����� ���B��* F�$� ����)2004 (=.  
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 =B� �24)10 :( ��2$�$�� =������* >���:� >� 
 ##�� 8�� ��$��� ����* F�$� ��$��(Auto-CAD) '

D�*���� �)�:� ���*��*$.  
  5	������ %1 5���%�� %1 	�?+�� G	�� (���, ��� ���	����%(The Cell-Counting Method)  �	.�+� '

( �0 (Grid)  ���
� (����� #�  4�*/� ,,+��� (�,
�� (��	��(10×10 units) �;� � 0�� �>�1 ')11.(  

  
 =B� �24)11 :( E��*���� /� �2*4* >� �� ����* ����� ##�� ��#��(10×10 units)  ���� ����0 ��)���

>*������ ������$.  
   ( �0�� �	��1 ����� �$    (�%�.6 �.� �.�:�% '(�6������ 5	�	����% ����� (;� �� ��:7� �
6N* �
61

��	���	� 5	�	���� . �	��/� 8�
 �	��+� �� ���units) (10×10  (�<��� �?�<��% 'L� &�� �	����� .   	
�.�� ��.� 9��
 4�	��� \� 0� �U;�� C�%�� ��� 4 �0�� ,,+��� ��
 ��%��)&� #�����% ����� 5�%,+ W	��	�  �	�.�� ��� 	<�

�	��	� �%��:�� ( 5	������ 5��)�% G	�� 4* �	��6� G������ ��� ���	����)  5	�	.��� �) 1 %1 	<&6� �%
0���
 (��>�)(����� (4� �� ���
� (���� ,,+� ��"(    �	.��/	� �U;�.� C�%.�� ��� 4 �0�� ,,+��� �:̂c�i+7�� '(8×8 

units) � 0�� 4* B�"%� 	� % ')12 (8	��1:  
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1 2

3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18

19 20 21 22 23 24 25

26 27 28 29 30

31 32 33

34 35 36 37 38  
 =B� �24)12 :(>� �� ����* ##�� >  D�0�*� a��*��* ��$�4��� E���*���� =�B��� `	$��.  

)��6��� :9�	���(  
   5�	6��� %1 5	,	����� ��� G	��% k��̂h� 1��� �)(Number of connections/ N) 	<��%,1% '(Lengths 

of connections/ L) � J���� � ��   �	>��� R�:31 %1 5���% ��" �	��	�� �%
0 .     (.*	 � �	.���� �.� X�.���
 �;� �%�3�� (���6&��� 5	�	����)4:(  

  

 =B� �$��)4 :( E1���1� $
 E�#�*��1� ���� �����:��� E�*�����(N)  �)��$#
$ '=�5��� a�<�
 /�*(L)  > 
>� �� ����* ����� ##��.  

Lengths of Connections (L) No. of Connections (N) Assumed Location No. of each part 
95.108936 23 1 
120.32109 25 2 
80.78994 20 3 
96.32088 25 4 
57.77892 21 5 
75.23209 21 6 
91.46485 23 7 
83.75320 20 8 
80.46066 18 9 
68.16164 17 10 
68.92173 19 11 

71.27665 19 12 

68.7522 19 13 
75.99183 19 14 
93.29037 18 15 
52.77669 17 16 
52.20484 16 17 
70.66625 14 18 
31.51071 10 19 
37.31795 12 20 
27.85598 11 21 
35.56487 12 22 
40.09242 12 23 
37.21045 10 24 
53.80046 11 25 
21.66315 7 26 
22.19896 8 27 
23.83622 9 28 
26.49206 9 29 
29.16368 8 30 
14.89532 6 31 

16.16351 6 32 

19.46716 5 33 
1 1 34 
1 1 35 
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1 1 36 
3 1 37 

0 0 38 

1846.505666 494 38 TOTAL 

  

   � 0�� ��� �6�� '�	>��� R�:31 J��3� �	6���% ,	����� 5	���� J��3 ��)�� ���%)13.(  

3231 33

80

34 35 38

No. OF CONNECTIONS (N)

LENGTHS OF CONNECTIONS(L)

SCALING RATIO (r)

36 37

= 494

1846.505666=

80/80=1=

26 27

19 20

109

3

24

28

21

3029

2322

11 12

16 17

4 5

13 14

76 8

25

15

18

1 2

  
 =B� �24)13 :(�(������*� >� �� ##���� E���$ C��� /�* ����1�$ #�*��1� E����0 �2� >A��� & �.  

  

     ��	.�7��� �.������ G%��1 ��� ���	���� 	�"%�* �� �l� ������%(Comparative Analysis)   �	.>��	�
�%��:�� �	���� �:U����% B3	��� 4�	���� . ���
� �� 5	�%��� (��	�) ��� 	�
 �%6��� J�,���%  D	.�����(r) 

 �� 1��� '�	��%,)
8

1
( =r  �))

8

2
( =r… @%����	� 4<���% ')1

8

8
( ==r .    %1 5	.,	����� ���.�1 G.��� �)

 5�	6���(N) 	<��%,1% '(L)@%��� 4* (� ������ ' . @%����� �"� 9��)
8

1
( =r   '�	.)��� ���.� �.�� ' 

 �	;�/	� 5���%�� %1 	�?+��(15,18,25) @%����� �"�% ')
8

2
( =r  �	;�/�(8,24,33,38,15,18,25) ' …�� 
% .

 5�	6��� %1 5	,	����� ��� G	�� ���%(N) 	<��%,1% '(L)   D	.����� ���
� 5	�%��� �� @%��� �  4*
 �1 �3� '(��	�)��(N=45, L=232.16468) ����� 4* �%/� @%)

8

1
( =r �1% '(N=81, L=380.292)  @%����� 4*

4�	)��)
8

2
( =r'  ...�� 
% . �	 0/� �>�1)14( ')15 (   �.��&� (�>.0�� (���  � 	�
 5�� ��	 01 D �� 4���

(�
% �%/ 	<��$ �>��� ��� 	<��" ,�� @1 �%3%�.  
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33

LENGTHS OF CONNECTIONS(L)

No. OF CONNECTIONS (N)
SCALING RATIO (r)

=

=

37

=

38

23

302928

2221 24 25

141312

17

65 7

15

18

8

21

50

50/80
326

1252.32452  
 =B� �24)14 :( E1���1� $
 E�#�*��1� ��0 ����(N) �)��$#
$ '(L)  @$����� >  ����* ����� `	$���

J�����)80/50( =r J������ ����� /�.  

33

SCALING RATIO (r)
No. OF CONNECTIONS (N)

LENGTHS OF CONNECTIONS(L)

36 37

=

=

=

38

28

21

1211

16 17

4 5

24

3029

2322 25

1413

76 8

15

18

1 2

60

60/80
388

1471.34382  
 =B� �24)15 :( E1���1� $
 E�#�*��1� ��0 ����(N) �)��$#
$ '(L) * ����� `	$��� @$����� >  ����

J�����)80/60( =r J������ ����� /�.  
    

   �;� �%�3�� B�"%�%)5 ( �;� �%�3�� �h<>7� 	���� 'P%6+�� ��<� (���6&��� (�� �� 5	�	���� 8	��1)6 (
5	�	���� 8�<� (�����	�%��� �����.  

  

 =B� �$��)5 :( E�#�*��1� ���� �����:��� ���2�� E�*�����(N) �)��$#
$ '(L)  �����( �*0 =2���� R�24*
 J���� ����� /� E��$���(r) ����* ����� `	$��.  

8 7 6 5 4 3 2 1  

8/8 7/8 6/8 5/8 4/8 3/8 2/8 1/8 Scaling Ratio (r) 
494 452 388 326 226 165 78 43 No. of Connections (N) 
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Lengths of Connections (L) 
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 =B� �$��)6 :( E�#�*��1� ���� ����2�� �������^$��� =����(N) �)��$#
$ '(L)  �����( �*0 =2���� R�24*

 J���� ����� /� E��$���(r) ����* ����� `	$��.  

Fractal Dimension (D) 

8 7 6 5 4 3 2 1  
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1.2471 
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1.0901 
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Log (L) 

  

  �	����� � ��%   (��	.6�H� 5?������ %1 4��	 ���� ��)���� ���(regression)    (.�����	�%��� ��.���
	<��� 	��* (;?��� �	3�H 5����
���� .  D	.����� ���
�� (�����	�%��� ����� ��� (;?��� 4��	 ���� ��)���	*(log(r)) 

1 5	,	����� ��� ���
�� (�����	�%��� ����� ��	�� 5	�%��� (��	�) 4* 5�	6��� %(log(N))   ��.��� ��	��% 'L��
 5�	6��� %1 5	,	����� 8�
 ��%,1 ���
�� (�����	�%���(log(L))   (.���, (�,+ (;?� #�� X��� 'I�+1 �L��

 ������ %1 \��� 5�� (&��+� =,	��N� �	"�1(slope) ��	��� . ������� %1 ����� �	  	� ��Z*(slope)  ��� ��)���� 4*
�)���H� @���;$?�� 4�:3�� %1 @�� �� ����� �� ������� I�+1 (���, �U)�� (���	 ���� 5	(Fractal Dimension/ 

D) (;?�� @�� �� ����� %1 ����� �Z* '(log(r))  J�(log(N))  @%	��)2471.1( ≈ND (;?�� 	�1 '(log(r))  J�
(log(L))  @%	��*)0901.1( ≈LD.  
   ��0�% ��� (��� �� � 	�<�� 8�
 � 0 �1 ��� '�%��:�� �	��� X�	��� 5��%; 	� ��$ '�	��" X�	���� 8�


 �	��� _U�A� �1 � �� � 	<��0�0% 	<�U>0� �� �����(Pattern) �	�:U��% �	�3	� .  ,.�� 	�1(Order)   %1 �.�� %1
�� \� 0� >%��� %<* �	��*1 %����% �������% J�%��� %�� �	>��� (�:� �>��� 5&) �1 9.�� :)2471.1( =ND( '

 �	>��� D&� (�:� %1 ��� %1 ,�� �� _��+� #� �%)���
� (���� ( 4����� ��>����% P�����% W	*���) �1 9.�� :
)0901.1( =LD .(	����� ,�� �0A� �� �$,  �	6��� %1)( ND � '4���, ��� I%��� ��� ����� #�	�� �(��	�

 �� 	<�* G���� @���% (�3	��� �	��/� 4*)1( ≈ND . =(��"�̂�̂ =(�	�� �	6�+0� 4��� ��
%) (��.6 ��� (  4.*
D%��� ��� \� 0�% �	��*1 ���
� (���� ������% J��%� .   ����%.;% 5	���.0� �� (�3�	+�� 5��)A��� �1 �����

	6�;� %1 (��	��3� %1 (����, �%�;%(�6+0 (�� �� %1 (�� ...    ���.����% J.��%��� �.� (������ J��� %1 �j�c� ��
4�*/�.  

   �	6��� %1 ,	����� ,�� �0A� ����� G3� ���)( ND  �� 	<�* G���� (�%��� 5	�%��� ���)1( ≈ND '
 P����� ,�� �0A� J� 	<�* I%	���%)( LD�1 @1 ')1( ≈≈ LN DD .  8�.
 4* �
��� ��	��� �1 4<����� ��%
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  �.U���� (���&�� I�+1% 'R	���� �	 �1% (� ���� P+� (����0� 	<�� 'M�� ������ 5	�����% 5��	�+ L�� (�	���
   ���.��% ��/� �?
�.�� 5	.����� #�3%�% �%�� (�,�,+� I�+1% '4��%0��� R	����% 5�:%	3��� J*�� '	<��	

5��	����% 4"��/� �	��N� �U���� (��	6�;� 	
���% ...    (,	.���� 8�.<� D�.� (� .0��� C?� � �% . �� �$
 �	>��� 	�?+% R�:31 G����% (� �
 L�	�$ 5�	���$)(*	"$ %1 _�� ?� (    %1 @�.� �� �.�7��� ,�." ��
�

 @���;$?�� 4�:3��) R�:3/� ��� 4* ���
��� ,��� ���0A� #&6%�(N)  	<��%,1 %1(L)    D	.����� �.��
� ���(r) (
�L�	� L�%��� �% � . L��% %1 (��+ %1 R:3 @1 4* '�	)��� ���� ��� '���
� @N*)M�� (�%�6 ��� (  ���."��

�	6��� %1 5	,	����� ����1 4* �����
�5  	<���(N)   4.* '#�	�� G�6� �;% '_��+� ���
� #��	�� '(<3 ��
 	<��%,1(L) �+1 (<3 ��I .  L��. ����% L�U����� (��	���� 5	������� �� ��) �	� �	���� (���� (3	��� 5R	3 	�
%

  �.��� 	<�	�� �� 4��� M�� J� #�	0��% ��	��� \� 0� (&��%��� 8�
 ,�"� (��	����� �	��H� L��; �%&� \� 0�%
�:U����% B3	��� �	����� .&��?� L��%,���� G%�	��� 5	����� ��� R%3��� ��*�	3��� ��
 4* 	<�� L�	.  

     =�.�� �.�� �%6%�� 4* (��	; 5��:	� (�%�6�� �Z* 'M�� �  �� ����� ���%)    \� .0� %.�% �.��
4"���*$ ( =(<3 �� P����� %��% '(<3 �� �	6���% ,	����� %�� (<�	0�� �%��% ,	��1 %�% �:U��% B3	�

I�+1 . ,	��/� 8�
 D	���� �U ���� �	"�1 (�%�6�� ��%) ��   @�.��;$?�� 4.�:3�� %1 @�.� �� ����� ���, (
��%:�% ���%�6 .G������% ��
����% _��%��� L�� =5�%	�� ��/� G�,��% .  �.���� ��
 ��� (>*	���� �$% 	� 

     (.���� (.�>�/� �1 �%.  '(�%�.6�� (�	� 4* ����1 ���̂7� (�%���% (�%��� 5����
� ��" %1 ���
� �%� ��
� (�>�/� 	<��% �	6%6+����� �n%,�% �n���% �n�
� (�	� 4* 4
 (��"�� . �1 (�3	��� �	��/� 8�<� � �� �<*

    �	 .01 D&�.� �% �.� 	
��� � �1 �
% e��	
� \� 0�% _��+� �	�:% �	 �% �+[ =_�> 4* �	��� �� ��
e(&�	"� =�	��N� � �% (��� �� � 	�<��  

  �;$?�� 4�:3�� %1 @�� �� ����� G	�� �Z* '	��1��% @��)  	.�
 P����� %1 ,	����� ,��� �	�	��� #&6%�
9���� ��
 4* (���
��� W�	��� '���� o@%"%* ]��	� 4* ���%�;% ���%�� 	�� �U*%� .    �	.3��� 	.�� M�.�� ��	���	�%

�� 1 =(����� =(�%��� =�	��1 �	��+� �	���% . I�+1 =5	�	��� J"+� �� '(��,� 5��� 	<��� ��� 4
 (����� 8�
%
;%L���3 =�%� .B��6 D ���% '����	� �$ M���̀ � (����� �Z* '	�&��1 	� %.  

   �	��H� L���$ (��� �$)�	�
��� ((��,� 5��� 	<� �% R	���� L���$ 4�� . R�A
 �U ��� (��,� 5�	  %�*
 .� �	����� �  (���: �� �	�
���)72 ( �%��: L�30)� (���� 5	*	�� �;N�% '��/� �� (�	�� �;N�(� �( '

����� �%� �� ��	 �	� ]��1 �� #�%�	�+� 	� �	�%� �%��:� �1 ��� %1 .  '�?).� '(����� 5��0� ��+ 4* �	 *
   �.>��% �	.����� 8	3�Z� 5?&��� �� 	<����% �	��H� L���$ (���� Mj�d�7�% '(��,��� R	���� L���$ ��� ��0� 	�

 8�	�+� 	� p�  W�:� 	���� #����$ (��� (���,��    �1 �.� �%.��:�� �	3.01 (��� ����7� 	�% '8��� 	� c�*% ���
,�	" �% ]W��� ?� (����� ��� R	0� 	�&�  T	��� .   	.<�����% 	<*	&,.6$ (���,% 	<�&� �	30/� �i�+ R	3%

 J�,��� � �	��H� (���� ���U,A� ����; L���� ]G��% (���� 5	*	�� �*% ��� @�%3%�� 4�	�:�&�� 	<�;�% G3%��
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	3�(����� 5��0�� ������� �	��	*� ��:
�% '8	
��7� ���� �1 ���1 	� ��$ #�U�3� %1 #�
.  
     L��	.���� �	.�: �	+�� 5	;%�+��� �� 8�%� 	� ��� 	<� ��%&�� 4��� L���� #����Z� �L�	� �	��H� N3��%

#� (6	+ ���%�% (�>�1 J�6� ������	� .�/� 8�
 5	� %�� ��� �,��� �1 �	�%� �%	��%  	
�U+.�� �1% '(�>
#���6�� . �?�%, �	��H� �<�3� ��* 'M�� �31 ��%)L���� �%�; ��� (   =�.�� �.�� �6�� �1 W	,��� ���

�%��:�� �	30N� ]�	��� j(���:� �:U��% B3	� .   #.� �	,�.� �% 	<� �6� � 5����� M	�
 5��:	�* M�� J�%
 #����$ �� ����% #� �� 	<���)� �� � �� 4�  ��� �6;N  %1 '#� 0 %1 #�&� �	����� �	��N  %1 '?̀)� �	30/

#�* �	30/� G����% _	&,6� (���,% #��3%�%*�%� ��� .(...  (.� �� I�+1 5�	���$ �%3% 4&�� � ��
%
L��	
� \�	 01% =�	��1% ]�	301 j����1 �� '#����� L���3 5����� �*% (&��+� =�	��/ .   	
�.�1 _�<�.�� 	� ��Z*

)��� �% � �N (� �� (�	�� �;1 4* �	30/� �� � �� ��� �� 1 ��� �%6��� 8	
( N����� �1 J�,��� �� #�Z* '
#��3%�%*�%� ��� %1 8�	��1 %1 ���3�� �	����� � 0  (����	� �h:3� �1 %1...  

  ��	; 4�;�% @�"� �	>� �%� (������� 	���	� P+� 	��* �	�7� #�&� R40��% ) ���
� (���� ,,+� %
%
4�*/�( . "�  ����1� $
 #�*��1� #�� J��� )2471.1( ≈ND   7��
��� #�� J��B "*�4� 1)0901.1( ≈LD 

 /� �*2
 "���B$ '���� /�(1) ��Z h���� /� .   �
2�� a�
�*$ ���$�$ �$� >  QA�$ ��� 8�� ��4� �	�$
������� @�A��� M�����.  �� ��+/� J� #,�"% #������ C	���%  ..� �	�%	�� �%)1( ≈≈ LN DD  �U ��.� �1 '

 (������ 5���%�� %1 	�?+�� ����)�	>��� R�:31(      %1 5	.,	����� ���.�1% 	<*	&,.6�% 	.<��:%� j(.���,�% '
 5�	6���(N)  	<��%,1% 	<��� 	��*(L) �	"�1 .     �.��
��% �.U��� 4 ��	.��� �	.>� %
 @�"��� �	>��� �1 	��%

� � ������	��	�%� (<�	0�� =,	��1 ��3� ��� 8�	6�+� %1 5�	) =���� #��:�+� � � .  (.��:3 �%���� 5R	3 ���
X�	���� (�%��� ���% ���,��� (��6% (���[%.  

      '(.3���� @�."��� X�.���� 5? 0� C?� 4* �U+���� ��� 4�N��	� '	��	���	� '�)�/� ���� �� �%
%1 ,	����� ,�� �0A� (�;���� ��������%  P�����)@���;$?�� 4�:3�� %1 @�� �� ����	� �?)��� ( @1 �	+�� ���

   =,	.��/ �	.�U�3� %1 '(�%��� =,	��1 ��� �	>	&� ���6���% ,�,+��� 5	�%��� �� I%��� @1 4* 4������ ���;
G	���� j(���� =,	��/ �	����� %1 '(�%��� ��� I�+1 . G%�	��� 5	������ (�	����� �� 	�
 �� �%  �.�� ������

 �� 1 (;�� 4 �0 ,,+� ��� #��%��% ���
� (����) �	��/	� R	&� �� ���(8×8 units)    �. �� �.� '������� ���
 L��3�� L��% I%��� ��� (;��	� �%6%��(Neighborhood)    %1 L�.��%�� (�� .��� L��%�� ��6	&� ��� ��� %1

��&���� ������ .(D	��� (�;���% (��	�� � �� =�����%     '�.��1 (.�;%)%�% �.� 1 (;�� 4�:3�� %1 @�� �� �����
 (�:���% ,	���?� ����� ��� 	� #�* I%	���� �?����� B��6�� 8	3��	� #<�3%� ��
� �6�%��% ����� \� 0�%

�� 8����� G����% 'P����� %��)1( ≈D .    �.<3��% ��.����� �.� �.�) �� ��/� ��
 �)� ����� G�,�� �;% 
5;%��%.  

  

E���$���$ E�������1�:  
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   �%��:�� �	��� ��� �1 ��� X�	���� 5�	01)�%6� ��� #)��%� �� �:��% B3	� 4�	��� �	>�  (  %.��
P����� #��� ��	�� �	6���% ,	����� .   �.�� #.���; ���	� ��:��� �� (�	�% C�� �� ��� �6% �; #�1 @1

	0����% J�%���% �%3<��% %����� �����%  4�+��.�� ��>����% P�����% M�	���� ��� #����	; ���	�% '(<3 �� ��
I�+1 (<3 �� .#�	���� �� @��� @���;$?�� 4�:3�� %1 @�� �� ����� (�	��� 8�
 D ��% .   8�.
 (.��; ��% 	� 

 �� 	<���; G����% (�%	��� (��:3�� %1 (��� �� �	��/�)1( ≈D.  
  � ����� P%6+� 	�1 4�*/� @�"��� X����(2-dim.)      �	�.�� �	.>� �.��� #.���	��% ���
� (�����

 (�"�� (�	� 9���� PU+0 ��* '�%��:��)(��6 ��� (   X�.���� ��.<� 43%.�%*�%���% 4�+���� G� ���� 4* .
P����� 	<��� �� �) 1 �	��*1 ,	�����% �������% J�%��� ���� 4�*/� 	<,,+� 4* (�����	* . 9���� P�+% ���

    @�.U0A� ,�."% ���.�� ��
� #;	��1 4* ��� �� 4�	3&�� �U+���	� @�"� X��� @1 ��� C?� (�%�6
�	6��� %1 ,	�����)( ND P�����% ')( LD . '(� ������% L��
6�� (���&�� 5������� �� 4"	
��� � �� � i�$

 ��
 �)�� 5	����% 5����� �� %1 (.���� �1 (��	��3� �1 (��	6�;� �1 (����, 5�	 1 R�%� �U+���� �� W%��� ...
 (
�	� =(;�� (�%��� (�3������ �*% ��� %1 (3	��� ��� (��	* =(�	��� �U+���� G3% ���)   %.�� G�.� ���7� �N 

���� 8	3�Z� #<�3%�% (������.(  
  	� 9���� 46%�%@�"��� X����� ��:��% A�<� �%� (�%���� ��  ���,  �.��
��� ,	��1 �0A� (�;���

) P��.��� ,��� �0A�  %1 '�	6���% ,	����� ,��� �0A�  @���;$?�� 4�:3�� %1 @�� �� ����� (  #,�."%
B��6 \� 0� @�"��� �	>��� ���
�% %�� #�3%� ��"� '	�&��1 	�  '�:�%�� \� 0� .%   %1 ��:.�+� :%.3� �

��+� (���� ��3� ��� (�>�/� 8�
 �	6�+� ��	  	<�� ��� 	<�� ��	���� G3� �� '��
����% G��3��� J"+� (��
 	<�,; %1 	
��� �%� ��� � �1 �	��Y� 2	���� J� '(���	�� (;?�� 4�(Anti-patterns)  (��.�; �%�; ��&� '

�	���%0� 5	����� �?,Z� L�	���� ���� %1 '(�%��� ���.  
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1.  q��	��� ��� ���3 '�� 1�/� L�	���?�H� 4* � qL�3 q(��?�H� (*	�)�� (����� ��� q)1992.(  
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ABSTRUCT 

This paper describes a comparison between beam-column junctions with and without construction 

joint, also, a parametric study deals with construction joint is presented by taking various conditions 

of the junction. These include the various positions of the construction joint, the axial load on the 

column, strength of concrete in the second cast and the amount of dowels crossing the joint. By 

developing a computer program which was originally written by Dr. Ihsan Al-Shaarbaf (1990), 

(P3DNFEA, program of three dimensional nonlinear finite element analysis), to consider the effect of 

construction joint depending on the fact that the shear force can be transmitted across the shear plane 

either by interlocking of the aggregate particles protruding from each face or by dowel action of the 

reinforcement crossing the cracks by using Fronteddu’s and Millard’s models, respectively. It is 

concluded that the construction joints existed in the beam-column junctions result in a significant 

reduction in the in-plane shear stiffness and it would affect only on the rotation and shear strains of the 

joint. 

 ا�����
��� و����م و��ده�� آ���� ا��
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INTRODUCTION 

The junctions studied are made of two pours, this results in a cold joint. The existence of a cold joint 

means that the specimens simulate construction practice. In addition to the overall behaviour of the 

beam-column junction during each stage of loading, it is important to note the mode of failure in this 

region. Five different modes of failure are possible in the beam-column connection, these include the 

following: 

1) Hinging of the beams at the connection, Fig.(1.a). 

2) Hinging of the column, Fig.(1.b).  

3)Loss of the concrete cover over the reinforcement in the beam-column core,Fig.(1.c). 

4)The loss of anchorage of the reinforcement, Fig.(1.d). 

5)The consequences of failure of the connection in shear, Fig.(1.e). 
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           (a)
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           (c)
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           (d)

Connection Shearing

               (e)

Fig.(1) Failure modes for beam-column connection

(Meinheit et al.(1981))   
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MATERIAL MODELLING 

In addition to the original three-dimensional computational model of P3DNFEA, the models used in 

the present study and incorporated in the  present developed program are as follows: 

1) Theoretical Aggregate Interlock Models 

2) Theoretical Dowel Action Models 

   

ORIGINAL THREE-DIMENSIONAL COMPUTATIONAL MODEL 

The 3-D computational model of original computer program, P3DNFEA is now described.  

     The behaviour of concrete is simulated by using 20-noded brick elements. An elasto-plastic work 

hardening model followed by a perfectly plastic response, which is terminated at the onset of crushing 

is adopted for concrete in compression. The plasticity model was illustrated in terms of the following 

constituents: 

1) The yield criterion of two stress invariants (Cervenka (1985)). 

2) An isotropic hardening rule is used (Cervenka (1985)). 

3) An associated flow rule (Owen and Hinton (1980)). 

4)The crushing rule. 

      In tension, a smeared crack model with fixed orthogonal cracks is used (Rashid (1968)). The 

reinforcing bars are idealized as axial members embedded within the brick elements, the elastic-

perfectly plastic relation which ignores the strain-hardening region is used. 

 

THEORETICAL AGGREGATE INTERLOCK MODELS 

Several models have been proposed to explain or predict the aggregate interlock behaviour. The two-

phase model by Walraven and Reinhardt (1981) is an example of a physical model. That type of 

model gives a better understanding of the mechanism involved at the crack interface. The Yoshikawa 

et al. (1989) model is an example of an empirical model, in which a free slippage occurs in the initial 

shear load on the cracked planes, which are not in close contact, and further application of the shear 

stress makes the cracks stiffer due to firm contact (aggregate interlock ). Finally, the shear stress levels 

off approaching the ultimate shear strength. The Tassios and Vintzeleou (1987) model is another 

example of empirical model. It covers two types of interfaces, the rough interface and the smooth 

interface, for normal stresses ranging up to 2 MPa, in this model, the frictional resistance is roughly 

equal to the tensile strength of concrete, taking into account the tensile strength reduction due to a 

transverse compressive stress as follows: 

           τ u = ( 0.3 ( 10+9 ( σc/f t ) - ( σc/f t )
2
 )

0.5 
) f t    (1) 
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     Fronteddu et al. (1998) utilized their experimental results from displacement controlled shear tests 

on concrete lift joint specimens with different surface preparations, to propose an empirical interface 

constitutive model based on the concept of basic friction coefficient (µb) and roughness friction 

coefficient (µi): 

            

i
µ

b
µ

i
χ

d
λ1

i
µ

i
χ

b
µ

d
λ

µ
−

+
=        (2)  

where      µb = 0.950 –0.220 σn       for  σn ≤ 0.5 Mpa 

              µb = 0.865 –0.050 σn          for  0.5 ≤ σn ≤ 2.0 Mpa 

µi is defined by the equations in Table (1). Two correction factors were introduced: (1) dλ , the 

dynamic reduction factor equal to 1.00 for static loading, and 0.85 for dynamic loading; and (2) iχ , 

the interface roughness factor equal to 1.00 for cracked homogeneous concrete, 0.8 for water blasted 

joints, 0.15 for untreated joints, and 0.00 for flat independent concrete surfaces. 

       Based on the experimental results presented by Fronteddu et al. (1998), a bilinear relationship 

between shearing stress and slip, Fig. (2), is adopted, which is multiplied by the effective thickness of 

the Gaussian point of interface element to convert it to a relationship between shearing stress and 

strain. From Eqs.(1-2) a good prediction of aggregate interlock stiffness can be obtained. 

 

Table (1) Concrete interface model roughness coefficient 

                                          (Fronteddu et al. (1998)) 

Interface type σn (Mpa) Peak µib 

 

Homogeneous 

σn ≤ 0.4 

0.4 ≤ σn ≤ 1.5 

1.5 ≤ σn ≤ 2 

0.90- 1.367 σn 

0.40- 0.1167 σn 

0.30- 0.050 σn 

 

Water- blasted 

σn ≤ 0.275 

0.275 ≤ σn ≤ 1.2 

1.2 ≤ σn ≤ 2 

0.875- 1.75 σn 

0.44- 0.185 σn 

0.25- 0.0375 σn 

 

Untreated 

σn ≤ 1.0 

1.0 ≤ σn ≤ 2.0 

0.15- 0.15 σn 

0.05- 0.005 σn 
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THEORETICAL DOWEL ACTION MODELS 

Shearing forces can be transmitted across a crack in the reinforced concrete by the reinforcement 

crossing the crack. If the reinforcement is normal to the plane of cracking, dowel action (shearing and 

flexure of the bars) will contribute to the overall shear stiffness.  

        It has been suggested  (Paulay et al. (1974)) that there are three mechanisms of shear transfer 

through the dowel action in cracked reinforced concrete, i.e. direct shear, kinking and flexure of the 

bars. If the concrete supporting each bar were considered to be rigid, the first two mechanisms would 

predominate. However, it has been recognized (Mills (1975)) that significant deformation of the 

concrete does occur, so that flexure of the dowel bar within the concrete is a principal action. This has 

been modelled (Millard (1984)) by considering the dowel bar as a beam on elastic foundation. This 

model is adopted, according to this model the dowel force,  Fd  is given by: 

           Fd = 0.166 ∆ t Gf 
0.75

 Φ
1.75

 E s
0.25 

     (3) 

where the constant term is dimensionless  

        Gf: foundation modulus for concrete, A typical value for 35 MPa concrete has been found to be 

750 N/mm
3
 (ACI Committee 325). For the high strength mix, it has been assumed that Gf α fcu 

0.5
. 

        Φ: diameter of the bar. 

        Es: elastic modulus of steel. 

        ∆ t: slip or relative displacement across the crack.  

Only the initial dowel stiffness can be predicted using this equation. 

Fig. (2) Adopted shearing stress-slip relationship

S
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n
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The nonlinear shear stiffness of the dowel action may be attributed to one or both of the following two 

causes. 

1) Crushing or splitting of the concrete supporting the bar. 

2) Plastic yielding of the reinforcement. 

A good prediction of the ultimate shearing force in a bar with an axial stress of αfy is given by: 

         Fdu = 1.3 Φ
2
 fcu 

0.5 
( fy (1- α 

2
 )) 

0.5     
(4) 

where  Fdu  is the ultimate dowel force. 

       An exponential function was used to describe the overall dowel action behaviour. The dowel 

force, Fd, is as follows: 

        Fd = Fdu (1-exp(-ki ∆ t / Fdu ))         (5) 

where ki is the initial dowel stiffness given by Eq.(3). By simplifying Eq.(5), the shear stiffness of the 

dowel action which is used in the present study as a  relationship between the shearing stress and 

shear strain can be found as follows: 

        kd = ( ki - 

du
F2

t∆
2ki

) t / Ac       (6) 

where t is the effective thickness of the Gaussian point of the interface element (next section), Ac  is 

the contact area. 

 

FINITE ELEMENT IDEALIZATION OF INTERFACE REGION  

An isoparametric finite element formulation, which is treated essentially like a solid element, can be 

used in the present study to represent the behaviour of the interface region (Desai and Zaman (1984)), 

Fig.(3). Since the element is treated essentially like any other solid element, its incremental stress-

strain relationship is expressed as: 

{dσ}= [D]i {d ε}          (7)     

where [D]i is the constitutive matrix for the interface region. The behaviour of the interface material is 

assumed to be like the concrete of the softer material properties for all stages of loading except the 

shear component which represents the shear behaviour specified for the interface region, (Gt, is the  

shear component represents the combination effects of aggregate interlock and dowel action), the 

constitutive matrix for the interface element can be written as: 
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[D]i = 
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ννν
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  (8) 

      The interface behaviour depends on the properties of the surrounding media. However, it also 

depends on the thickness of the thin-layer element. If the thickness is too large in comparison with the 

average contact dimension (B), of the surrounding element, the thin-layer element will behave 

essentially as a solid element. On the other hand, if it is too small, computational difficulties may 

arise. Based on the available experimental results, the satisfactory simulation of the interface 

behaviour can be obtained for (t / B) ratios in the range from (0.01) to (0.1). This conclusion may need 

modification if the nonlinear behaviour of solids and interfaces were simulated. The 20-noded 

isoparametric brick element is used.   

 

 

SARSAM’S SPECIMENS 

Nine specimens of beam-column joints (5 exterior, and 4 interior) were tested by Sarsam (1983), the 

plane exterior ones-EX series were made of two pours. The first pour was made on the first day. This 

pour included the specimen up to the level of the top of the joint. The second pour was made on the 

next day for the top column. 

        All columns were reinforced with four 16mm longitudinal bars and 8mm closed links at 85mm 

center to center spacing, giving three joint links. Only specimen EX2 has no links in the joint. All 

beams were reinforced with two 16mm bars on the tension side and two 12mm bars on the 

compression side. Beam links were 8mm closed ones spaced at 130mm center to center. 

        The EX1, EX3 specimens are used in the present study, of dimensions shown in Table(2), 

Fig.(4). Material properties and additional material parameters of these specimens are shown in Tables 

(3), (4), respectively. The column was first loaded to a predetermined value of (Nc), prior to any beam 

loading, the next stage involved loading the beam up to ultimate load. The numerical analysis is done 

using KT2a method, with a tolerance of 5% on the displacement convergence criterion.  

 

 

 

 

t

Fig.(3) Thin layer interface element 
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Table (2) Dimensions of Sarsam’s specimens 

Column 

Load 

(kN) 

av 

(mm) 
Lc 

(mm) 

Column Beam Dimensions/ 

Specimens b (mm) h (mm) b (mm) h (mm) 

292.6 1422 1531 152 205 152 303 Specimen EX1 

293.7 661 1532 152 204 152 305 Specimen EX3 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Table (3) Material properties and additional material parameters of 

Sarsam’s specimen EX1 

 

First pour (age=64 days) 

Material properties Material parameters 

Modulus of elasticity , E (MPa) 35500 Tension-stiffening 

parameters : 

α 1=35 ,  α 2=0.35 

Shear-retention 

parameters : 

γ 1=25,γ2=0.5, γ 3=0.1 

Compressive strength, f’c(MPa) 56.3 

Tensile strength , f t (MPa) 4.5 

Poisson’s ratio , ν 0.2* 

Uniaxial crushing strain 0.00238 

Fig.(4) Experimental corner beam-column joint specimen (Sarsam (1983))  

b 

h 

b 

h 
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Second pour (age=63 days) 

Material properties Material parameters 

Modulus of elasticity , E (MPa) 30600 Tension-stiffening 

parameters : 

α 1=25 ,  α 2=0.25 

Shear-retention 

parameters : 

γ 1=25,γ2=0.5, γ 3=0.1 

Compressive strength, f’c (MPa) 45.8 

Tensile strength , f t (MPa) 3.93 

Poisson’s ratio , ν 0.2* 

Uniaxial crushing strain 0.003* 

Steel reinforcement  

Longitudinal bar Φ16 

Y
o

u
n

g
’s

 

m
o

d
u

lu
s 

(M
P

a)
 208000 

Y
ie

ld
 

st
re

ss
 

(M
P

a)
 504 

Longitudinal bar Φ12 198000 507 

Stirrup bar Φ8 197000 517 

 
Table (4) Material properties and additional material parameters of Sarsam’s specimen                        

EX3 

 

First pour (age=39 days) 

Material properties Material parameters 

Modulus of elasticity , E (MPa) 28000 Tension-stiffening 

parameters : 

α 1=20 ,  α 2=0.20 

Shear-retention 

parameters : 

γ 1=25,γ2=0.5, γ 3=0.1 

Compressive strength, f’c(MPa) 41.3 

Tensile strength , f t (MPa) 3.44 

Poisson’s ratio , ν 0.2* 

Uniaxial crushing strain 0.00701 

Second pour (age=38 days) 

Material properties Material parameters 

Modulus of elasticity , E (MPa) 28200 Tension-stiffening 

parameters : 

α 1=19 ,  α 2=0.19 

Shear-retention 

parameters : 

γ 1=25,γ2=0.5, γ 3=0.1 

Compressive strength, f’c (MPa) 40.9 

Tensile strength , f t (MPa) 3.56 

Poisson’s ratio , ν 0.2* 

Uniaxial crushing strain 0.003* 

Steel reinforcement  

Longitudinal bar Φ16 

Y
o

u
n

g
’s

 

m
o

d
u

lu
s 

(M
P

a)
 208000 

Y
ie

ld
 

st
re

ss
 

(M
P

a)
 504 

Longitudinal bar Φ12 198000 507 

Stirrup bar Φ8 197000 517 
 

1) Finite Element Describtion  
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The concrete of specimens EX1 and EX3 are idealized by using 58 20-noded brick elements 

(including 1 interface element at the top level of the joint), and 37 20-noded brick elements (including 

1 interface element at the top level of the joint), respectively (for half of these specimens), Fig.(5). To 

simulate the procedure of loading that occurred during the experimental test, the column axial load has 

been firstly applied in equal increments of 10% of the maximum column load for two specimens. 

Later, for EX1 two different sizes of increments have been used for beam loading. The beam was 

loaded initially by increments of 3.75kN up to 75% of the expected collapse load (40kN). Then 

reduced increments of 1.43kN each were applied until the failure load has been reached. While for 

EX3 the beam load has been  applied in equal increments of 12.5% of the expected collapse load (80 

kN). Both the initial and post-cracking stiffness are reasonably predicted for two specimens, Table (3), 

Table (4). 

 

 

b-2)Side view of the finite element mesh of EX3 specimen.

Column mesh:2×205,203.5,3×101.7,interface elemnt,203.5,2×205.

Beam mesh:2×87.5,3×103.7,4×87.5.

a-2)Side view of the finite element mesh of EX1 specimen.

Column mesh:2×205,204,3×101,interface elemnt,204,2×205.

Beam mesh:2×87.5,10×107.2,4×87.5.

b-1)Finite element mesh

of EX3 specimen.  

a-1)Finite element mesh

of EX1 specimen.  

Fig.(5) Finite element discretization of half of EX1,and EX3 specimens.  
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Analysis of the Specimens 

In order to analyze the two specimens, the effect of the thickness of interface element must be 

examined. For EX1 specimen, numerical tests with values of the thickness (t) equal to 0.014mm, 

0.14mm, and 1.4mm have been carried out. The results show that the type of failure of the specimen 

EX1 is beam hinging in the range of (0.014-0.14)mm for thickness of interface element, Fig.(6). A 

response stiffer than the experimental results was obtained when the thickness is reduced within the 

range, and the best fit to the experimental results was obtained at t=0.14mm with effective thickness 

of Gaussian point of 0.038mm, in which the effect of non-linearities along the loading stages is clear. 

The failure load of numerical results is 37.5kN while the failure load of experimental results is 

36.04kN, so that the error ratio is 3.9%. While for EX3 specimen, numerical tests with values of the 

thickness (t) equal to 0.0014mm, 0.014mm, and 0.14mm have been carried out. The results show that 

the type of failure of the specimen EX3 is beam hinging in the range of (0.0014-0.014)mm for 

thickness of interface element, Fig.(7). A stiffer response was obtained when the thickness is reduced, 

and the best fit to the experimental results was obtained at t=0.0014mm with effective thickness of 

Gaussian point of 0.00038mm. The failure load of numerical results is 80kN while the failure load of 

experimental results is 78.7kN, so that the error ratio is 1.6%. In the present study the value of 

thickness of the interface element equal to 0.14mm is fixed for EX1 specimen to present a parametric 

study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.(6) Comparison between experimental and analytical

response of different interface thickness values for EX1
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      PARAMETRIC STUDY 

A parametric study deals with construction joint is presented by taking various conditions of the 

junction. These include the various positions of the construction joint, the axial load on the column, 

strength of concrete in the second cast and the amount of dowels crossing the joint as follows: 

 

THE EFFECT OF POSITION OF CONSTRUCTION JOINT  

In order to study the effect of the position of construction joint (c.j.), a numerical study on four cases 

have been carried out, Fig.(8), case (a) without c.j., case (b) with c.j. at the top level of the joint, case 

(c) with c.j. at the bottom level of the joint, and case (d) with 2 c.j. one at the top level and the other at 

the bottom level of the joint. These cases were made of three pours (1,2,3) of material properties 

shown in Table (5). Fig.(9) represents load-tip deflection of these cases. As a result of comparison 

between curves, a soft response occurred for cases with c.j., the response of case (c) is softer than the 

response of case (b), and a softer response of all is observed for case (d). It is worth noting that the 

mode of failure in all cases is beam hinging. 

  

Fig.(7) Comparison between experimental and analytical response of 

different thickness value for EX3 specimen. 
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Table (5) Material properties and additional material parameters of Sarsam’s specimen EX1 

 

First pour (1) (age =64 days) 

Material properties Material parameters 

Modulus of elasticity , E (MPa) 35500 
Tension-stiffening parameters : 

α 1=35 ,  α 2=0.35 

Shear-retention parameters:  

γ 1=25,γ2=0.5, γ 3=0.1 

Compressive strength, f’c(MPa) 56.3 

Tensile strength , f t (MPa) 4.5 

Poisson’s ratio , ν 0.2* 

Uniaxial crushing strain 0.00238 

Second pour (2) (age =63 days) 

Material properties Material parameters 

Modulus of elasticity , E (MPa) 30600 
Tension-stiffening parameters : 

α 1=25 ,  α 2=0.25 

Shear-retention parameters: 

γ 1=25,γ2=0.5, γ 3=0.1 

Compressive strength, f’c(MPa) 45.8 

Tensile strength , f t (MPa) 3.93 

Poisson’s ratio , ν 0.2* 

Uniaxial crushing strain 0.003* 

Third pour (3) (age =62 days) 

Material properties Material parameters 

Fig.(8) Cases of construction joints of beam-column joint 

Case (d) Composite specimen
(with 2 construction joint at top

& bottom levels of joint)

Case (c) Composite specimen
(with construction joint at

bottom level of joint)

Case (b) Composite specimen
(with construction joint at top

level of joint)

Case (a) Monolithic specimen

(without construction joint)

1

2

1

2

1

3

2

1
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Modulus of elasticity , E (MPa) 29200 
Tension-stiffening parameters : 

α 1=25 ,  α 2=0.25 

Shear-retention parameters: 

γ 1=25,γ2=0.5, γ 3=0.1 

Compressive strength, f’c(MPa) 43.3 

Tensile strength , f t (MPa) 3.31 

Poisson’s ratio , ν 0.2* 

Uniaxial crushing strain 0.003* 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE EFFECT OF CONSTRUCTION JOINT  

There are different contributions to beam tip deflection. The first one is the contribution of joint shear 

strain, the second involves the contribution of joint rotation, and the third is the contribution of beam 

flexure. To examine the effect of the construction joint on the behaviour of the specimen, the shear,  

and normal strains in the joint (at 63.4mm left to the column face), and the normal strains in the beam 

(at 77.65mm right to the column face) are studied for case b (construction joint at the top level of the 

joint) and compared with strains of the monolithic specimen (case a) as follows: 

      From Fig (10), and Fig.(11), the shear and normal strains in the joint for case (b) are greater than 

the strains for case (a) (monolithic). The amount of increment of strains near the construction joint is 

larger than the strains in other positions of joint. These results refer to the occurrence of several short 

diagonal tension cracks along the length of the shear plane (construction joint), and these cracks cause 

a reduction in shear and in normal stiffness. While the normal strains in beam, Fig.(12), are not much 

affected by the construction joint. This means that the construction joint affect only on the behaviour 

of the joint itself. 

 

 

Fig.(9) Load-beam tip deflection for cases of construction joints.
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Fig.(10) Shear strains distribution in joint for case a (monolithic) and 

case b (construction joint at the top level of joint)  
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Fig.(11) Normal strains distribution in joint for case a(monolithic) 

and case b (construction joint at the top level of joint)  
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The Effect of Column Axial Load  

In order to expect the effect of column axial load on the behaviour of construction joint, a numerical 

study have been carried out, one with experimental column axial load (Nc=292.6kN), and the other 

without column axial load (Nc=0.0) for case (b) (construction joint at the top level of the joint). It can 

be observed from Figs.(13) and (14) that the shear and normal strains in the joint for Nc=0.0 are less 

than the strains for Nc=292.6kN. A possible explanation of this feature may be the following: Higher 

compressive stresses (at Nc=292.6kN), in spite of the more intimate interlocking they secure, produce 

a shortening of the protruding asperities and subsequently reduce overriding resistance. This 

mechanism does not happen at Nc=0.0. On the contrary, due to loss of the confinement for Nc=0.0, 

the response of the specimen is softer than the response for Nc=292.6kN, Fig.(15) .     

 

 

 

 

 

 

 

 

Fig.(12) Normal strains distribution in beam for case 

a(monolithic) and case b (construction joint at the top level of 
  

-0.002 0.000 0.002 0.004 0.006
Normal strain in beam (mm/mm)

0

50

100

150

200

250

300
D

is
ta

n
ce

 a
b
o
v
e 

b
o
tt

o
m

 o
f 

th
e 

b
e
am

 (
m

m
)

With c.j.

Without c.j.

-0.004 0.000 0.004 0.008
Shear strain in joint 

0

50

100

150

200

250

300

D
is

ta
n
ce

 a
b
o
v
e 

b
o
tt

o
m

 o
f 

th
e 

jo
in

t 
(m

m
)

Column load (kN)

Nc=0.0

Nc=292.6

Fig.(13) Shear strains distribution in joint for case b  

(construction joint at the top level of joint)  



  

  

Journal of Engineering  Volume 13  June 2007         Number 2  
 

  

  1480

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE EFFECT OF THE AGE OF CONCRETE  

The age of concrete pour has an effect on the compressive strength of the concrete. In order to study 

the effect this age, three tests have been carried out with f'c values equal to 45.8, 40, 30 MPa, Fig.(16). 

These values of strengths are for ages approximately equal to 63, 38, 20 days, respectively for the 

second pour of case (b), including the construction joint. These tests show that the higher concrete 

compressive strength results in a slight increase in aggregate interlock stiffness of construction joint.  
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Fig.(14) Normal strains distribution in joint for case b  (construction joint 
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Fig.(15) Load- beam tip deflection for case b  (construction joint 

at the top level of joint)  
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The Effect of the Percentage Steel Across the Construction Joint  

Three numerical tests have been carried out by using the percentage steel across the construction joint 

(diameter of the bar) of 0.031 (16mm), 0.033 (18mm), and 0.048 (20mm) for case (b), construction 

joint at the top level of joint, these tests occurred with original designed specimen. From Fig.(17) that 

the deflection decrease with the increase in the steel percentage across the construction joint (column 

reinforcement), the contribution in this result is the decreased strains in joint due to increase in dowel 

stiffness.  
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Fig.(16). Effect of compressive strength of concrete on the load-beam tip 

deflection curve for case b  (construction joint at the top level of joint)  

  

Fig.(17) Effect of diameter of crossed steel on the load-beam tip
deflection curve for case b  (construction joint at the top level of joint)  
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CONCLUSIONS 

The following conclusions can be drawn from the present study: 

1. A good assessment can be obtained for the behaviour of corner beam-column joints by using the 

developed program of the current study  (DPACJ). 

2. The performance of the interface element , used in this study to model the shear transfer between 

two concretes cast in different times, is quite good. 

3. A stiff response can be obtained with the decrease in the thickness of the    interface element. 

4. The response of a specimen can be expected within a certain range of thickness of interface 

element. This range depend on the finite element mesh, nonlinear behaviour of material, and the 

combination of stresses.    

5. Construction joint is a joint of weakness. Depending on the position of construction joint, the 

shear and normal strains in joint would increase.  

6. The construction joint would affect only on the joint. On the other hand, the mode of failure for 

all cases of corner beam-column joint in this study is beam hinging, this type of failure conforms 

with the design requirements. 

7. The presence of column axial load would decrease the aggregate interlock stiffness. However, it 

secures a good confinement for the beam, and so as the result of increase it. 

8. The grade of concrete of the second pour, producing a construction joint, does not much affect 

the behaviour of the corner beam-column joint.  

9. The increase of steel percentage across the construction joint would decrease the strains in 

joint. Consequently, a slightly decrease of deflection occurred.    
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ABSTRACT                                        

Numerical and experimental investigation of blood flow through stenotic and tapered arteries 

under pulsation condition are studied. Blood is considered as non-Newtonian fluid. Artery is 

considered as a rigid wall tapered vessel with different tapering angles (0.5
o
, 1

o
,1.5

o
), as well as, 

straight vessel for comparison. The governing equations have been written in stream- vorticity method 

and are transformed into generalized coordinate system.  The time marching has been employed to 

solve the resulting partial differential equations. The experimental work carried out to examine 

pressure in vessel and pressure drop across the stenosis under pulsation condition. Differential 

pressure transducer coupled to the data acquision card type PCI-911DG, which is built in computer 

was used to record pressure data. 

 The results showed that, as a tapering angle increases (0.5
o
, 1

o
, 1.5

o
) both wall shear stress and 

pressure drop increasing, also as stenosis increases (50%, 60%, 75%) both wall shear stress and 

pressure drop increasing. These behaviors are found in literature, pressure drop is used to compare 

experimental data and numerical results, which indicates agreement. As the distance into taper section 

increased both wall shear stress and pressure drop are increased, as well as, both wall shear stresses 

and pressure drop increased with inlet flow rate increased, while decreased with inlet diameter 

increase. 
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INTRODUCTION 

 
Considerable attention was paid to study related circulatory flow in blood vessels toward the 

beginning of the last century. A large number of theoretical and experimental Investigations relevant 

to this biomechanical aspect have been carried out in recent years. Hardly need mention that, about 

three quarter of all death occurring these days are mainly caused by circulatory diseases associated 

with disturbed flow condition in the blood vessels which lead to the malfunction of the cardiovascular 

(Chen 2003). The presence of stenosis increases flow resistance in arteries which forces the body to 

raise the blood pressure to maintain the necessary blood supply. Both the high blood pressure and 

narrowing blood vessel cause high flow velocity, high shear stress and low or negative pressure at the 

throat of the stenosis .In addition to low shear stress, flow separation and wall compression or even 

collapse at the distal side of stenosis .This may related to the thrombus formation, atherosclerosis 

growth and plaque cap rupture which lead directly to stroke and heart attack. 

Several studies of fluid dynamics through stenosis have been carried out to evaluate the flow 

pattern and the shear stress at walls at steady and pulsate flow conditions .Some attempts to study 

experimentally,(Walburn and Stein 1981 ) measured velocity with Laser Doppler anemometer in 

plexiglass tube with tapered of 0.5
o
, 1.5

o
 and 2.5

o
, measured from centerline to the wall during steady 

flow. These angles were comparable to the angles of taper observed in abdominal aorta of normal 

subject 1.5
o
. ± 0.2

o
 "range 0

o
 to 3

o
" as reported. They calculated transition Reynolds number which 

based on diameter of tube at point of measurement. The results show increasing of transition Reynolds 

number with increasing angle of tapering, also with increasing distance into tapered section for 

constant angle of taper. These observations suggested that, tapering of abdominal aorta tends to 

promote laminar flow.(Ojha, et al 1989 ), used a photochromic tracer method to record pulsatile flow 

velocity profiles simultaneously at three axial locations along a flow channel. Thereby enabling the 

time and spatial distribution of the wall shear stress to be studied, as well as visualizing of the flow. In 

addition, they studied the transition to turbulence triggered by the moderate stenosis.  Asymmetric and 

axisymmetric stenosis models were used. Shape of stenosis were based on clinic observations , 

percent of area reduction were 45%,65% and 75% for axisymmetric ,while 38% "of total area cross 

section " for asymmetric stenosis .The work was done for Reynolds number in the  ranges of 380-575 

and Womersley number of 7.5.  

Other numerical studies deal blood as non Newtonian fluid, (Pontrelli 1999) investigated 

steady axisymmetric flow in a constricted rigid tube. A shear- thinning fluid which modeling the 

deformation dependent viscosity of blood .The governing equation was written in vorticity–stream 

function and solved numerically by finite difference method. The constriction was described by 

exponential function. The results demonstrate that, the non-Newtonian character of the blood in some 

typical regimes modify the flow pattern even beyond the constricted region, reduce the pressure drop 

and shear stress at the wall across the stenosis.(Kimmel and Dinnar 1983) , modeled blood flow 

through a segment of large arteries  between bifurcations as pulsate flow of Newtonian fluid in tapered 

converging tubes of small angle of converging  up to 2 degree .In this study, flow rate  considered as a  
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forcing function rather than uniform pressure gradient .Integral method was used in solution of Navier 

–Stokes equations. The result showed that, change in flow condition due to tapering of blood vessel 

are significant even for small tapering angle and cannot be ignored.  Also as tapering angle increases, 

peak shear stress at wall also increases, but still below the critical range which lead to damage of 

endothelial. (Porenta et al 1985), used a finite element method to model pulsating flow in arteries 

segment including taper, branch, and obstructions. In branch model ,they assumed that the pressure 

different across location where branch diverter from the main stream was small and can be neglected, 

while in obstructions model ,they calculate pressure difference across stenosis .The results indicate  

that, the pressure wave were traveling along artery shows an amplification  in  distal direction ,and  

they conclude that each nonlinear term contributes to the effect noticed in the nonlinear case .While 

the influence of the convective acceleration term in momentum equation was stronger ,also the 

combined effect of both nonlinearities was larger than the added effect of each individual term .The 

effect of stenosis on pressure shows that the distal pressure for 50% stenosis only slightly reduced, 

and distal flows were slightly damped ,while for high stenosis  (75% and 90 %) had large effect. Wall 

shear stress is an important factor in the study of blood flow ,and an accurate  predication of the 

distribution of wall shear stress are particularly useful for understanding the effect of blood on 

endothelial cells. (Guo-Tao et al. 2004) investigated distribution of wall shear stress by simulation of 

pulsating blood flow through stenotic tapered artery .The incompressible Navire-stokes equations 

were solved numerically by a finite difference method .The results indicated that, the height of 

stenosis was more important factor influencing blood flow than wall tapering. Tapering found to have 

no effect on flow pattern, but only change the value. On the other hand, it becomes bigger value than 

without tapering; also the peak value of shear stress of tapered artery was bigger than that without 

taper. In parallel work, (Hun Jung et al, 2004) used a finite volume method to solve three 

dimensional, fully developed flows and blood taken as a non Newtonian fluid which obeys to 

Carreau-Yasuda. They compared the results with (Ojha et al 1989) for case of 45% stenosis 

trapezoidal profile, and a good agreement was shown .For cosine profile stenosis, a numerical 

computational was conducted for 50 %and 75% stenosis, and the result showed that, the severity of 

the stenosis had significant effect on the general flow features such as separation Reynolds number 

and size of the separation region, while the shape of stenosis had less effect. Also, it showed that, the 

peak values of wall shear were exerted at the stenosis and negative shear stress were observed in the 

region where a vortex exists. Summary of the past studies indicated that, the flow of non-Newtonian 

fluid though constricted taper artery under pulsation condition was not considered .As a conclusion, 

(Guo-Tao et al.2004), considered Newtonian fluid through constricted taper pipe, but only for small 

angle 0.5
o
, while the present study extended to involve 1

o
, and 1.5

o
. Also noted that, (Hun-jug et al. 

2004), considered flow  of non-Newtonian fluid through constricted tube under pulsating condition , 

but they ignored effect of tapering and restricted the study to small percent of 

stenosis(25%,33%,50%),which its effect was small on pressure drop across stenosis (Porenta et al. 

1985).  

The present work will consider the flow of non-Newtonian fluid through constricted artery 

under pulsation condition for tapering angles up to 1.5
o
 and percent of stenosis up to 75%.Numerical 

and experimentally investigations of blood flow through constricted taper artery are carried at 

pulsation condition for vessels with 50%, 60% and 75% stenosis. Blood considered as a non-

Newtonian fluid obeying the shear thinning model 

 
MATHEMATICAL MODEL AND NUMERICAL CALCULATION  

 

  
 The governing equations of blood flow through stenosis artery at pulsation condition are 

formulated and stated in polar coordinate. The working fluid is considered as a Non-Newtonian fluid 

and incompressible.  
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 A schematic of the stenosis tube geometry considered in this study is shown in Fig. (1), which 

consists of two main parts, tube and the stenosis, stenosis geometry   is shown in Fig.(2)                                         

Let us now consider a cylindrical coordinate system (x,r,θ) having the x-axis coincident with 

the pipe axis .since we seek an axisymmetric 2D solution ,all variable are assumed independent of θ 

and the azimuthal component of v vanishes ,equation of motion can be written as follows: 
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   Where (u ,v) are the components of V in the r and x  directions respectively.                 

Complex rheological behavior of blood is approximated using a shear thinning model, where 

the apparent viscosity is expressed as a function of the shear rate ( Pontrelli 1999) and (Hun Jung et 

al 2004 ).  

)

1

)1(log1
)(()(

.

.
.

γ

γ
ηηηγµ

∧+

∧++
−+= ∞∞

e
o

                                                                                      (3) 

Where
 

oη  and ∞η  are asymptotic viscosities as 0
.

→γ  and ∞  respectively  

∧  is a materiel constant with dimension of time representing the degree of shear thinning . 
.

γ shear rate which represents a scalar measure of the rate of deformation is given by (Pontrelli 

1999 ) and (Hun Jung et al 2004 )  
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            To non-dimensionalized the governing equations, a set of variables are introduced (Pontrelli                 

1999) 
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Where:  R= vessel inlet radius and    V =average velocity at inlet 

eq.(1) can be written in following form  
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and eq.(2) can be written in following form
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Where:
υ

λ
f

R= Womersley number , 
µ

ρuR
=Re   Reynolds number;   ƒ= Frequency of pulsation              



Journal of Engineering  Volume 13  June 2007         Number 2  
 

  

                                                                                                                                                       

X&   = Non dimensional viscosity which is given below   
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Stream – vorticity approach 

 

By cross differentiating and by subtracting the counterparts of eqs(5) and (6), we obtain the 

vorticity –stream function formulation :                                    
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and shear rate can be written as follows 
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Vorticity and stream function are related by poisson equation: 
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Stream – vorticity approach obtained by eliminating the pressure terms from the momentum 

equations. Since its important to know pressure drop to used to compare numerical results and 

experimental data, the pressure drop along x- axis derived from momentum equation for steady 
incompressible, and non – Newtonian fluid eq.(5), ( Nallasamy 1986).pressure drop calculated from 

following equation: 
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Also, shear stress at wall is important factor which has direct effects on internal layer of vessel, where 

a high value of shear stress leads to damage in vessel wall, shear stress at wall calculated from 

equation:  

 

                   
Re

wall
wall

ω
τ =∴                                                                                                              (12) 

 

Initial and boundary conditions 

 

To solve vorticity transport equation eq(8) and Poisson equation eq.(10), it required that, the 

appropriate expressions for stream function ψ   and vorticity ω  be specified at the boundary     

(Anderson et al 1984 ). The specification of these boundary conditions is extremely important since it 

directly affects the stability and accuracy of the solution. It is important and care must be taken to 

ensure that the physics of the problem is correctly modeled, on how to treat these geometries or 

models. 

Hence the boundary conditions are summarized as follows:- 

1- At tube center line: 

  Vorticity and stream function sets equal zero, 0=ψ , 0=ω  
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2- At tube wall: 

     Since no-slip condition at wall, velocity component equal zero, stream function set  

  wallψ   = q/2                                                                                                                                    (13) 

Where q is flow rate for real situation (Taylor et al 1998), the flow changes as shown in Fig.(3). 

While vorticity at wall derived form Poisson eq. (10), with 0=
∂

∂

r

ψ (no slip condition), for that eq.(10) 

can be written as ( Agrawal and Sengupta 1989 ) and (Cheng et al 1974). 
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  3- At tube inlet:  

    Since the flow at inlet uniform, the vorticity value will set equal zero, while stream function at inlet 

varied form zero at center line to value of eq. (13). 

4- At tube exit: 

     At exit, the variation in vorticity and stream function is negligible 

     0=
∂

∂
=

∂

∂

xx

ωψ
                                                                                                                              (15)           

5-Initial condition: 

 Assume no flow, then stream function and vorticity set equal to zero. 

Since the stenosis artery is a complex domain, therefore, the governing equations are transformed 

from polar coordinate to generalized coordinate.  

 
 TRANSFORMATIONS OF GOVERNING EQUATIONS 

 

Transformation stream- vorticity equation:-              
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 Transformation vorticity transport equation:- 
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Transformation of pressure drop equation:- 
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Transformation of shear rate equation:- 
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Transformation of boundary equation:- 
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Grid Generation 

 

The most common partial differential equation uses for grid generation in two dimensional is a 

Poisson equation in the form (Fletcher 1987) and (Anderson 1984). 
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Where  

22

ηηα rx += , 22

ζζγ rx += , ηζηζβ rrxx += and ζηηζ rxrxJ −=  

 

all grids used in this investigation are generated with  P( ηζ , )=Q( ηζ , )=0.( Bramley and Sloan 1987) 

and (Ali 2002).The non linear difference equations are solved iteratively using a point SOR method 

and, at each cycle of iteration, the coefficients βα ,  and γ  are evaluated using previous 

approximations. Fig.(4.a) and Fig.(4.b) show the physical and computational domains which are used 

in the present study. 
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Time Marching 

 

The basic principle of time marching is to start from an initial guess of the flow pattern, then 

the method solves the unsteady continuity, momentum equations for the evolution of the flow in time 

until equilibrium is established. Basically, the flow region is divided in to a grid network so that 

different terms in the governing equations are defined at each grid point. The flow field is then solved 

from the governing equations in finite difference form subjected to the imposed boundary conditions. 

With the flow equations applied to each grid point in turn, the solution becomes closer to the unsteady 

state solution for each time step ( Iatridis 1987). 

 

Experimental Work 

The rig was designed to simulate the blood flow through constricted artery, which must satisfy 

number of requirements: pulsation flow, non-Newtonian fluid, taper vessel, stenosis vessel, 

developing flow and Laminar flow as shown in Fig.(5). 

Dosing pump type ALLDOS Model EN600034 with flow rate 115 L/h, 3 bars, power 

0.09Kw, 0.88-0.9 Ampere and 1270 RPM is used, which its operation is based on using diaphragm 

movement by rode connected eccentric disc, to generate pulsating flow. In order to measure a 

pressure drop in the test section under pulsation condition, the differential pressure transducer type 

FOXPRO with range of 20 mbar is used. Its operation is based on diaphragm movement and 

converting the pressure drop to electrical signal. Switch flow meter with range of 130L / h which 

gives indication for the number of pulses in sec and frequency .Flow meter is connected with interface 

card and accessed to computer. The amount of flow rate was measured by collecting working fluid in 

container and time was accounted by stop watch. To simulate the fluid dynamic behavior of blood, a 

solution of 2:3 glycerin-water with density of 1.120 g/cm
3
 and viscosity (3.5 - 4) C.P. was used (Rose 

et al 1998 ), (Cebral et al 2002).Density and viscosity were measured every day before starting to 

record data .To simulate the artery Acrylic tube with inlet diameter 16,18 and 20 mm (Cox et al 

1979) and (Wellborn and Stein 1981),with taper angle for each size (0.5, 1 and 1.5 degree) were 

used (Walburn and Stein 1981),(Kimmel and Dinnar 1983).The length of test section was 175 mm 

(Walburn and Stein 1981) and 10 mm threaded added in entrance  to use in connection with Acrylic 

block. The taper of inside diameter of tube match taper angle of out side diameter of stenosis to fix 

the stenosis in first third length of tube. Small tap was used upstream of joins block to prevent 
bubbles to inter test section. 

Stenosis model is made from Acrylic with trapezoidal shape (Ojha et al 1989) and (Varghese 

and Frankel 2003) as shown in Fig.(2).  

Five taps with sizes according to ISO standard 5167 (Miller 1983) were drilled in test section and 

locations of taps are shown in Fig.(6) . A copper tube with 4mm out diameter was fixed on taps (1, 2, 

4, and 5) by epoxy, as shown in section (A), while bolt (M4) was used for tap (3), which required a 

special connection, as shown in section (B). 

Data acquisition card type PCI-9111 is used, this data acquisition card is based on the 32-bit 

PCI bus architecture. High performance design and the state-of-the-art technology make this card 

ideal for data logging and signal analysis application in areas like medicine and process control, 

(Aimen 2005). In order to read the signal from the Pressure Transducer and Swatch flow meter sensor 

a program is required to record signal. Before writing this program it is necessary to ensure that the 

MATLAB defines the DAC in its tools. 

 

Results and Discussion 
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To study the influence of stenosis and taper on blood "Non – Newtonian fluid" flow through 

artery, the computations were conducted for various stenosis severity (50%, 60% and 75%) and 

different values of tapering vessel angles (0, 0.5
o
, 1

o
, and 1.5

o
). To perform a careful parameter 

analysis, the instantaneous streamlines are calculated and shown during cycle of pulsation flow at 

intervals of 0.1 sec. The non – dimensional Womersley and Reynolds numbers are considered as 7.1 

and 50 respectively .The study was carried out under constant flow rate. 

 

 Numerical results 
 

        As a first step in the analysis, a check for validation program is performed through the 

comparison of numerical results with results of (Pontrelli 1999), for steady flow, Newtonian and non-

Newtonian fluid at a Reynolds number of 10. The stenosis profile used in this comparison is described 

as exponential function. The stream at wall "maximum stream function" is 50 (Pontrelli 1999). 
Comparison shown in the Fig.(7) and Fig.(8) which indicated that ,the present result has higher values 

than results in (Pontrelli 1999), for both cases Newtonian fluid and Non – Newtonian fluid .The 

difference in results is due to method of calculation, the used equation in calculation of wall shear 

stress and input parameter of (Pontrelli 1999). 

The numerical study is carried out under pulsation condition, Re. No. = 50 and Womersley No. 

=7.1.Blood is considered as a non- Newtonian fluid with parameter Λ =50 which represents the degree 

of shear – thinning and for ratio of asymptotic viscosities at zero and infinity equal to δ = 40 

(Pontrelli 1999). The number of grid points along the axis in (ζ, η) is (176, 16), the time step has been 

selected as small ∆T=10
-7 

compared to ∆T=10
-6 

 for steady case [Pontrelli 1999] in order to guarantee 

the convective and diffusive stability condition in all cases [Fletcher 1987,1].Different angles of 

vessel tapering (0,0.5
o
,1

o
,1.5

o
) with different degree of stenosis (0,50%,60%,75%) are considered. 

Streamline, wall shear stress and pressure drop results are plotted and studied.   

Streamline distributions inside blood vessel at each time step are plotted for different stenosis 

present and different vessel tapers. The results indicate that, the stream line changes as inlet flow rate 

change as shown in Fig.(9) , the separation region is noted clearly  at time step 0.4 sec and grows as 

time advanced. Also it can be noted that, the separation region upstream of stenosis showed to be 

started at time step 0.8 sec .The WSS distribution for tapered vessel 1.5
o
, with 75% stenosis is shown 

in Fig.(10). Due to taper angle, the WSS increases as distance increased into tapered section, the peak 

value of WSS is shown at stenosis part. While the WSS values at time step 0.4 sec, 0.5 sec, 0.7 sec 

and 0.8 sec are not increased due to low inlet flow rate at these time steps. At time step 0.7 sec and 0.8 

sec negative values of WSS are indicated. The WSS distribution indicated same behavior as seen 

when stenosis 60% but a lower reduction is observed with negative value of WSS at time step 0.8 sec, 

also this effect become lower at 50% stenosis. Comparison WSS of distributions at some 

instantaneous times reveals that, the highest of stenosis has a significant influence on the WSS at the 

throat, the downstream of throat, and the length of separation region. Since high WSS is not only 

damage the vessel wall and causes intimal thickening, but also it actives platelets which causes' 

aggregation, and finally results in the formation of a thrombus, the wall shear stress at throat deserves 

to be noticed (Guo-Tao et al 2004).  

Pressure drops along the axial length of vessel are plotted, which indicated that, the pressure 

drops at stenosis part and this drop in pressure reduces at distal stenosis. Also, pressure drop changes 

as the inlet flow rate changes at each time step. Further, the drops change according to the stenosis 

percent changes. Fig.(11) shows pressure drop along the axial length and the pressure drop changes as 

inlet flow rate changes. A high reduction in pressure is observed at time step 0.2 sec and 0.3 sec for 

high flow rate. Pressure at distal stenosis was higher than pressure at proximal stenosis due to the back 

flow at distal stenosis.  

 

Experimental Results 
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Experimental work was conducted at Re.No.= 580, Womersley No.= 6.3, and frequency= 

2.1Hz. The density of the working fluid was taken as 1.120 g/cm
3 

and the viscosity in rang of (0.035-

0.04) Posie. Test was carried out at an average flow rate of 51 ml/sec and the data recorded at rate of 

1280 samples for duration of 51sec.As the stenosis is increased the pressure difference increased. As 

the stenosis increase the cross sectional area decreases and flow accelerates, consequently, the 

pressure energy is converted to the kinetic energy. The reduction in pressure can be calculated from 

Bernoulli's equation and it can be written as follows (Walburn and Stein 1981): 

       )1)((5.0 42 −=∆
md

D
Vp ρ                                                                                                             (24) 

Where dm is diameter of center stenosis: D is diameter upstream stenosis 

It is clear that, diameter of stenosis had a direct effect on value of pressure drop value, and power 

index "four" explain the difference in pressure drop for different percent stenosis (50%, 60% and 

75%) as shown in Fig.(12).This results are in agreement with the results of (Porenta et al 1985 ), 

(Bapat 2005), and consistence with the general observation of the effect stenosis of less than 50% 

have little effect on pressure and flow .This is one of the reason why stenosis are difficult to diagnose 

at an early stage. The pressure difference in all measurements are non dimensionalzed with ( 2

2

1
Vρ ) 

for all the cases. In taper section, the flow is accelerated and energy is converted from pressure energy 

to kinetic energy. This reduction in pressure energy can be calculated by substituting the continuity 

equation into the Bernoulli equation, with some manipulation, yields (Walburn and Stein 1981). 

        ]1)
tan2

[(5.0 42 −
−

=∆
θ

ρ
lD

D
Vp                                                                                                 (25)                            

eq.(25) indicate that, as tapering angle increases the  pressure drop increase as shown in Fig.(13), also 

the pressure drop increases as distance of taper section increases.  

 

 Comparisons       
 

To check the validity of the numerical technique, several comparisons of numerical results for 

different cases are performed at time step 0.2 sec, where the discrepancy is clear and this is due to the 

maximum flow rate. Experimental results for pressure drop are compared with numerical results and 

with available literature for same cases.  

The effect of different percent stenosis on the WSS for 1.5
o
 taper vessels are shown in 

Fig.(14), which indicates that, as stenosis degree increases WSS increases and the same trend is by  

(Hun Jung et al 2004).  

Pressure drop plots are used for comparison of numerical results with experimental data for the 

present study to investigate the effects of stenosis percent for different taper vessels .Fig.(15) indicates  

that, the pressure drop increases as degree of stenosis increases in straight vessel and a high pressure 

difference is found at 75% stenosis  compared with 50% and 60% stenosis .This behavior was in 

agreement with (Bapat 2005) as shown in Fig.(16).It indicates that, present experimental data has a 

higher value, this due to constant viscosity and shape of stenosis used by (Bapat 2005), also it is 

coincident with the conclusion of the survey investigated by (Young 1979).  

On the other hand, the effects of tapering angle are investigated with and without stenosis. For 

case of without stenosis, comparison of experimental data with (Walburn and Stein 1981) is 

preformed as shown in Fig.(17) .It is clear that, present data have higher values than (Walburn and 

Stein 1981) data ,this is due to the viscosity (0.0103 Poise) compared with a mixture fluid with 

viscosity in range (0.035 to 0.040 Poise) in present study. Also as tapering angle increases WSS 

increases, and this is clearer at the end of the vessel. This is in agreement with (Kimmel and Dinnar 

1983) as shown in Fig.(18).It  shows that , the  values of WSS in the present study are higher than 
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(Kimmel and Dinnar 1983) values, because they are assumed Newtonian fluid, different input flow 

rate and one dimension flow .   

 In order to compare the numerical results with experimental data in the present study, 

calculations are preformed with sine wave profile inlet flow rate to confirm the experimental work  

with Re.No.= 580 and Womersley No.= 6.3 as shown in Fig.(19). This indicate that, the numerical 

results have same behaviors as experimental results, but with higher values 

 

 Conclusions 
 
 Computational and experimental simulations for blood flow through stenosis artery under 

pulsation condition were carried out in this study. A shear thinning model was used to express Blood, 

which is considered as non-Newtonian fluid. Attention was focused on the effect of stenosis on 

pressure drop and wall shear stress. The following are the main conclusions drawn from the present 

investigation work ,Both pressure drop and wall shear stress were increased as taper angle of vessel 

increase (0.5
o
, 1

o
, 1.5

o
), due to increase in kinetic energy, also increased as stenosis increase (50%, 

60% and 75%), and a large effect seen for 75% stenosis.  

Wall shear stress had negative values where vortex exists, vortex region may be the origin of red cell 

damage and thrombus formation and the stenosis will progress further, and the high stress is exerted 

near the stenosis throat of blood vessel due to fast flow and will generate serious physical damages. 

Tapering of the artery did not change flow patterns, but only changed values, amplified the values of 

wall shear stress and pressure drop. As the distance into taper section increased both pressure drop and 

wall shear stress were increased. Both pressure drop and wall shear stress were increased as the 

distance into taper section increased. For the stenosis percent less than 50% a little effect on pressure 

and flow was seen. This is a reason for why the stenosis percent are difficult to diagnosis at an early 

stage.  

 As a related to the present work, following suggestions can be put forward. Vessel wall will be 

consider as a distensible, curved artery will be consider, where curved is more reality, and Bifurcation 

will be consider. 
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  Fig. (1): Schematic of geometry 

 

 

 
Fig. (2): Geometry of stenosis 
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Fig.(3): Physiological flow rate in artery (Taylor et al 1998) 

 

 

 

 

 

 

 

 

Fig. (4.a): Physical domain 

                           

 
Fig.(4.b): Computational domain. 

Fig.(4): Physical and computational domain 
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Fig.(5): Experimental rig 

 
 

 

Fig.(6): Location of pressure tapes 
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Fig.(7): Comparison of numerical results  

of wall shear stress   (Newtonian fluid) 

 with (Ponterlli 1999). 

 

 

 

   

 

 

Mesh for taper vessel ,1.5 deg. ,with 75% stenosis

23.8651

22.2741
20.6831
19.0921
17.5011
15.91

14.319
12.728
11.137
9.54603

7.95502
6.36402
4.77301
3.18201
1.591

T= 0.1 sec

Stream

36.5261

32.9158

29.3056

25.6954

22.0851
18.4749

14.8646

11.2544

7.64417

4.03393

0.42369

-3.18655

-6.79679

-10.407

-14.0173

T= 0.2 sec

Stream

  

29.7635

28.1353

24.6202
22.2741

21.2661

19.0921
15.91

12.728

10.9426
9.54603

6.36402

4.77301

3.51702
3.18201

1.591

0.606286

0.0324331

T= 0.6 sec

Stream

22.2741
19.0921
17.9145
17.0761
15.91
15.508
14.319
13.839
12.728
11.137
9.54603

7.95502
6.36402
4.77301
3.51224
2.74323
1.591
0.696324
0.271048
0.0478213

T= 0.7 sec

Stream

36.5261

29.3056

22.0851

15.5839

15.3085

14.8646

13.0514

11.2544

10.1234

7.8998

7.64417

6.25476

5.64196

4.26685

3.89446

3.01275

2.20841

1.51798

0.840876

0.42369

-6.79679

-14.0173

T= 0.8 sec

Stream

 
 

 

 

 

 

 

 

0 10 20 30 40
Axial length ( X/ R )

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

500

W
a
ll

s
h
e
ra

r
s
tr

e
s
s

(d
y
n
e
/c

m
2
)

Present study

Ponterlli [22]

0 10 20 30 40
Axial length ( X/ R )

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

500

W
a
ll

s
h
e
ra

r
s
tr

e
s
s

(d
y
n
e
/c

m
2
)

Present study

Ponterlli [22]

 

Fig.(8): Comparison of numerical results of wall shear 

stress   (Non Newtonian fluid) with (Ponterlli 1999). 

 

 
 
Fig.(9): Instantaneous streamline pattern at 

different time steps  in pulsate flow, for 1.5
o
 

taper vessel with 75% stenosis 
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Fig.(10): Wall shear stress at different 
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taper vessel 
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Fig.(11): Pressure drop at different time steps, for 

1.5 
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taper vessel with 75% stenosis. 
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Fig.(13): Effect of tapering angles on 

pressure in vessel at flow rate 50 ml/sec 

 

Fig.(14): Effect of stenosis percent on  wall 
shear stress at time step 0.2 sec  
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Fig.(15): Effect of stenosis percent on pressure 

drop at time step 0.2 sec 1.5
o taper vessel. 
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Fig.(16): Comparison of experimental results 
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Fig.(19): Comparison of numerical results for 

different  stenosis percent with 

experimental results for taper vessel 

1.5 degree. 

 

 Fig.(18): Comparison of numerical results 

             for tapering angles with 

             numerical results of ( Kimmel  

             and Dinnar 1983) . 
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Fig.(17): Comparison of experimental results for 

tapering angles with experimental 

results of (Walburn and Stein 1981) 
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NOMENCLATURES 

symbol Meaning Units 

D Diameter m 

e Strain rate 1/s 

L length m
 

P Pressure N/m
2 

q Flow rate ml/s 

r r-coordinate  

R Radius m 

Re Reynolds number  ρVR /µ  

u Velocity component in x-direction m/s 

v Velocity component in r-direction m/s 

V Velocity vector m/s 

x X-coordinate  

α  Transformation parameter in grid generation  

β  Transformation parameter in grid generation  

γ  Transformation parameter in grid generation  

γ&  Shear rate   
r

u

∂

∂
=γ&  

1/s 

 

δ  

 
∞

=
η

η
δ 0

 ratio of asymptotic viscosities at zero to infinity      

 

ζ  Coordinate in  the transformed domain  

η  Coordinate in  the transformed domain  

η Shear viscosity N/m
2 

θ Taper angle    deg. 

 

λ  Weromsly No.=R
ν

f
ratio of transient inertia force               

                                    to viscose force  

 

Λ Material constant s 

µ  Dynamic viscosity kg/m.s
 

ν  Kinematics viscosity m
2
/s 

ρ  Fluid density kg/m
3 

τ  Shear stress N/m
2 

φ  
General dependent function  

X&  Non-dimensional viscosity  

ψ  Stream function m
2
/s 

ω  Vorticity 1/s 

ζ∆  Grid step distance in ζ -direction  

η∆  Grid step distance in η -direction  
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NUMERICAL STUDY FOR A THREE DIMENSIONAL LAMINAR 

NATURAL CONVECTION HEAT TRANSFER FROM AN 

ISOTHERMAL HEATED HORIZONTAL AND INCLINED SQUARE 

PLATE AND WITH A CIRCULAR HOLE 
 

 

 

 

 

 

ABSTRACT 

 A theoretical study for a three-dimensional natural convection heat transfer from an isothermal 
horizontal , vertical and inclined heated square flat plates (with and without circular hole) has been 
done in the present work. The study involved the numerical solution of the transient Navier-Stokes 
and energy equations by using finite deference method (F.D.M.). The complete Navier-Stokes 
equation are transformed and expressed in terms of vorticity-vector potential. The Energy and 
Vorticity equations were solved by using an Alternating Direction Implicit (ADI) method because 
they are transient equations of parabolic portion, and the Vector potential is solved by using an 
equations Successive Over-Relaxation (S.O.R) method because it is from elliptic portion. The 
numerical solution is capable of calculating the Vector potential, three components of Vorticity and 
temperature field of the calculation domain. The numerical results were obtained in rang of Grashof 
number (103≤Gr≤5x104) with Prandtl number of (0.72) for square flat plate and the other consist a 
circle hole with ratio 0.6 and 0.8 diameter of the hole to main square side length. 
         The numerical results showed that the main process of heat transfer is conduction for Grashof 
number less than 103 and convection for Grashof number larger than 103 and the results of local 
Nusselt number show fairly large dependence on inclination angle. For horizontal plate facing upward 
and downward, average Nusselt number is proportional to one-fifth power of Rayleigh number, and 
there is a significant difference in heat transfer rates between the upward and downward cases.  For 
horizontal plate with circle hole facing upward for Grashof number 104, the effect of core portion 
caused a limited increment in the heat transfer rate, where as for the facing downward case, the effect 
was larger and the maximum value of heat transfer rates is be for square flat plate with circle hole by 
ratio 0.6 for all inclination angles. With the increase of Grashof number to 5x104  heat transfer rates 
decrease except the square horizontal flat plate with circle hole by ratio 0.6 .   
 The average Nusselt number increases with the increase of inclination of plates facing upward 
to reach to the higher average Nusselt number at vertical position then decrease with increase of 
inclination of plates. And the maximum value of average Nusselt number is depended on the ratio of 
diameter of the hole to main square side length, showed that the maximum temperature gradient 
occurs at the external edge of the horizontal plate (with and without circle hole) facing upward and at 
the lower external edge in inclined case. The numerical results was made through comparison with a 
previous numerical and experimental work, the agreement was good.   
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"را�� 4"د�ـ� 

�د�ت ا���آ� ����� ا���I�ن ���� ا�
��د و L��� ا���I�ن ا�87�.� ا�
��د و ا��]3ل 4	` ا����د�ت ا��
�"�� ا�'�وD�ت ا���"دة ��� %�
)
����3 %��د�ت �'&� ��3ك 
����C ) %��د�ت ا�"وا%&� ودا�� ا���HI ا�@�%((Alternating Direction Implicit Method(  ���

 V2�@ا�� WCد�ت ا����%)Parabolic Equation (��D��32ق ا���ا+� ا��� ����C
���  (Successive Over Relaxation)(SOR) و 
 YD�8ا� WCد�ت ا����%)Elliptical Equation(  �>"ا��
 AD84" رPr=1  را�� AD2500و��"ود ر ≤Ra ≤ 3500  ن�7L��و درس ا�
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��د ، و ان ز%(  L �2��� ا�����ار �@3ن ا�D ا�'�ق 
&( ا���I�ن ا�87�.� وا����7 ا�
��د و ��L� <3ز�W در�6 ا���ارة
 Numerical)ا�'�وD�ت ا���"دة ا��"د��  ����F (Suriano & Yang 1968)ا���7L�ن ا��9"مو . ا�����ار ��� 
�B�دة رAD آ�ا^3ف 
Finite-Difference Scheme)  وا �D�Cوا� A+Bد�ت ا���% ���pار������) ��

آ	ا
	��د�ت ا(  �D��Cا��� ا� �����
�����ل ا���ارة 


�ا�"<� Ra<300>0ا���ارة ��"ى رAD را��   %( )'�.k أ�2&� و 3�4د�� %:�r� �89ط ��3ت در�6 ADو رPr=0.72&10   . "6و

�ا�"<� 84" 50و ا���� ��AD را�� أ4	` %(  50ا���	&� ا��.&:� �����ل ا���ارة ه� ا��3)&� ��AD را�� أ�D %( ا���7L�ن ان  AD3ن ر@� �%


�ا�"<� ا�`   0.72 ADدة ر�را�� و ز� AD3ت ر�و ��� 3�%�g رAD �:	>  50ا�` B�0داد 3�%�g رAD �:	> ��"ود رAD را�� %(  10و 84" �
 )% ��
�� AD��100 را�� اآ��
�3ث �4	&�  W% .\ ا��"د���ا��8 Hر��` <3ا52 6&" 84" %�	4 �[L .و  �ن ا%�7L�� Pera & Gebhart)ا�

��� ا����+�� 2 (1973Cن ا����6 �و 4"د�ً �&ً	�4 ����p )% �D"رCا��� ا� �����
أt �&�2&� %�"دة و %�.	� 
Bوا��  أ����kC�ل ا���ارة 

�ا�"<�  ADآ�� 84" ر�د�ت ا���ا��"د�� ��� ا��� ����C9"ام ا����
�3ت در�6 ا���ارة و ا�'&u ا���اري � �F�r� 52ة 4( ا��&v(

Pr=0.7 �2 �>"ا��
 ADود ر"L "843ت در�6 ا���ارة، و�L �2��� ا��:�r� )&9ط ��3ت ا�'&L ≤ Pr ≤ 10  0.1 u��� ا��:�r� )&9ط �

"ر�6 آ�&�ة 4	` <3ز�W ا�:��4 و 
"ر�6 إا���اري ، و <3)� ا�` ان أي  ��w� 3ت در�6 ا���ارة�%��� �	]'&�� ا��2&� ا��:�r� �89ط �

�ا�"<� L �2��� ا�]'&�� ا��2&� ا��:�r� �89ط ��3ت ا�'&u ا���اري �wدي ا�` ��]�ن D	&	� 4	` <3ز�W در�6 ا���ار ADدة ر�ة و84" ز�

��� ا���ار�� Cا� U��%(  %80ا���7L�ن 
&8� ان �4	&� ا����ل ا���ارة �2 ا�]'&�� ا���3د�� t&� ا���"دة ه3 أ4	` 
��"ار . ا�:��4 و<�	&� 
AD�2 ا�]'&�� ا��2&� 84" ر S�&��  ��b3ا��:�9"م 105آ�ا^3ف ا�� W.�وف ا���� %( در�6 ا���ارة و �3ع ا���x y'� "84. �&	�4 �%أ

   cm �"را�ـ� ا����ل ا���ارة �]'�.k %( ا���8&3م %:�C&	� ذات أ
��د  (Mach-Zehnder)�2" ا��9"%� <�8&� ا��]��3 
��&�س 
0.35x0.43 U��
&�8� آ��> أ�D ��"ود ر�8�Gr<104   AD�.\ ا���	&� ��"ود رAD آ�ا^3ف 4	` %( اأو آ��> ا��8�.\ ا��"د��  0.025cmو
  . Gr>104آ�ا^3ف 

��� ا����+�� �����ل ا���ارة 
����$� ا��$� %$(    د Cairnie & Harrison)  (1982أ�6ى ا���7L�ن و  Cن ا����I� �&	�4و ����� ��را
7�$3ت در6$$� ا��$$�ارة   

$&( ا���$$&g وا�]$$'&�� آ�&$� 6$$"اً ،   �'$�رق در6$$� ا��$$�ارة  و)$'&�� 3�4د�$$� %:�89$$    g&$$ارة ا����$$L �$6در �$$&L

295K    �89$:% ��&'$[ت ا��$�ارة     و ا��$"ى %$( در6$��  �اره"$�%TW = 674,574,473 & 373 K .     ت�$Dا�'�و �$���F �%"9�$�����$ً� ا
 m  0.00127 و �$�0.25m    Uو 4$�ض   F 0.5  m$3ل  %� �4	&ً� �2$" ا�%"9�$� C�$:%  ��&'$(&	�  ذات     أا���"دة ��� ا����د�ت ا���آ�� 

  3x108و   �4x108@$3ن ا�C$bا
� �$�AD آ�ا^$$3ف      K 623  و  K 473 و 
&8$> ا��&��$�ت ا�
�"ا.&$� ان ا�:$kC ذات درL �$6$�ارة       

����<&/ و +3اص ا��ـ�.W 84" در�L �6ارة ))bulk temperature     A$> 3$� ًآ7&$�ا �&v�> �6ا��&�� ا��� S�( ه&L �2ر إ�$&�+ )temperature 

 (film  ارة ا+�ى�L �6&$� و ا����8$�      . أو أي در	ا��� H$I.��� )&$
 D (Goldstein &  Lau$�م ا���7L$�ن  . ا���7L�ن L]� 4	` <3ا6 5$2&$" 


"را�� 4"د�� و �4	&�  (1983p   )$% �D�$�Cا��� ا� �����

l^$@�ل     )$'�.k ����ل ا���ارة  �$�
�9%	W$% (  �$' أ�$kC ا%�$"اد أو G%"$4�    (ا�2&$� %�
ا��$�ارة ، <=$�8> ا�"را�$� ا�L �$���8$�       وGG6� ا��:ـ9( إ�` ا�4	` وا�7��&� وGG6� ا��:ـ9( إ�` ا��'� ��rط ��3ت در���6���&( ا�و�` 



Journal of Engineering  Volume 13  June 2007         Number 2  
 

 

 1521


�ا�$"<�    Ra<8x103>40ا����د�ت ا���آ�� 
����C ا�'�وD�ت ا���"دة L )�b"ود رAD را�$�  A$Dور    Pr=0.7،     �$را� A$D3ت ر$�و6$"ا ان �

�ا�"<� ا�`  ADدة ر�د 2.5وز�w� �%��% دة�ار إي ا�` ز�"��
 Pera)وه�S ا�W$% 5$'�> �I&�8 ا�"را�$� ا���	&	&$� �	�]$"ر       %7.5 ����ل ا���ارة 

& Gebhart 1973)   رب�$$I> &$$� <=$$�8> أ6$$�اء	ا��� �$$�
�$$� %$$( ا�8'7$$��&( ��$$�اوح F$$3ل ا�=$$	W %$$(   إأ%$$� ا�"را�% �$$�C�� �$$	�@ل ا��$$���
0.0258m `0.203ا�m   3اءG	� �b��%   )�bLDرا�� "ود ر A0<Ra<4.8x103      \.�$�8$` %$( ا�	ل ا��$�ارة أ4�%� ا����.\ %��> ����و آ

    .ا��"د�� L �2��� ا�]'&�� وGG6� ا��:ـ9( إ�` ا�4	` 

     �L��درا�� 4"د�� و �4	���p �$&$�ل ا��$�ارة 
����$� ا��$� %$( �$3Cح دا.��$� أ�2&$� وGG6$� ا��:$9( إ�$`               (Mustafa 2001)أ�6ى ا�
 3$��$�9"ام ���F$� ا�'�وD$�ت ا���$"دة ا��&8&$�                 ا�4	�r� `ط �l
ت در6$� ا��$�ارة ، ا��8$�.\ ا��"د�$� ا��$� 4 �$[L	G&$� %$( ا��$� ا��$"دي آ��$> 

�� CD$$� دا+	$$� $$:8
%$$) ا��C$$� ا�9$$�ر�6 و و6$$" ان ا���	&$$� ا��.&:$$� ���p$$�ل ا��$$�ارة ه$$� ا��m≤  AD�$$� �&$$(3≥0.2  ��0.9$$�ص و L	�$$�ت 
 )% �Dآ�ا103 آ�ا^3ف أ AD�� ` %( و ا����	آ�ا^$3ف     103^3ف أ4 A$Dى ر"$% )�b103 ≤Gr ≤ 107      ل�ل ا���$"$��� �$�&D `$[Dو ان أ

      )&$
�� ا���C ا�"ا+	� ا�$` ا��C$� ا�9$�ر�6 <�$�اوح :8
 (0.3-0.2)ا���ارة ا�@	� �@3ن 84" ا��	��ت ا��� �G� �y' ا���C ا�9�ر�6 �	��ص و 

�زد��د رA$D آ�ا^$3ف و ا���r$� <@$3ن ا^$" 
�زد�$�د رA$D آ�ا^$3ف 2$�          و <�l&� ا�p']�ل ا���اري 4	` %��%� ا����ل ا���ارة ا��3 ��� ��b

 .L��� ا���ص ا%� L �2��� ا��	��ت �2��%� ا����ل ا���ارة ا��B� ��b3داد 
�زد��د رAD آ�ا^3ف %W ز��دة �:�� ا���C ا�$"ا+	� ا�$` ا�9$�ر�6   
 �7L��� ا��ـ� �:3Cح %:��3ـ� أ�2&ـ� %�
�ـ� ا�r@� وGG6$� ا��:4i� )9$	$`    درا�ـ� �4	&ـ� �����ل ا���ارة 
���� (Rafah 2002) أ�6ت ا�

 V2�@> �	+3ل ا�"اCا� ��:� �@rا� W
%( ا�3Cل ا�)$	� �	��
$ـW وآ�ه�$� 
C$3ل +$�رr�0.25       �6ـ�ط ��3ت در�6 ا��ـ�ارة و ذات ��/ %�
0.096m  U�$$$�و ��$$$"ى %$$$( در6$$$�ت ا��$$$�ارة    0.5x106 <Gr< 6.28x106"ى رA$$$D آ�ا^$$$3ف  ـ%$$$( ا���8&$$$3م ��$$$  0.0096mو 
و6ـ"ت ان D&�� %��%� ا����ل ا��$�ارة ا��b3$�� �	]$'&�� ا��:��3$ـ� ا���
�$� <@$3ن اآ�$� %$� ��@$(            TW=40,61,82.5,112.8Co%�"اره�

��� ا����+�� > �2	U ا����C8، <�� ا��&�$�  Cن ا��4( ��6 �I>�8در�6 ا���ارة ا� W�2 <3ز� �&��/ ا���"ار ا�@:
84$" ا��D$�اب %$(    84" ا����2  
3�%�$g %��%$� ا���$�ل       �$�&D و ان B$ب ا���آ�D ل ا���اري�ا��'] )% �I>�8در�6 ا���ارة ا� W&� �2 <3ز�	ا���"ار ا�� �I&�� ��&'[ا� Bآ�%

 ��:8
 ��
��$� ا����+�$� ��$� 
�B$�دة رA$D آ�ا^$3         %32.1ا���ارة �	]'&�� ا���
�� ذات ا��7/ أ4	H8% ` �	]'&�� ا���Cا� U��ف b$�(  و 
   .ا��"ى 

  �L�� = ���Φ�ل ا���ارة 
����� ا��� %( أ�Dاص وL	��ت %�.	ـ� 
Bوا�ـ�pدرا�� ����ـ� 4"د�ـ�  ) Hassan 2003(أ�6ى ا�
0o,30o,45o,60o,90o,120o,135o,150o&180o   �63ت در�4( ا��:�3ى ا���2، وGG6� ا��:9( ا�` ا�4	` وا�` ا��'� �rـ�ط �

���F 9"ام���
 Gr ≥ �103 ا�'�وD�ت ا���"دة ��� ا����د�ت ا���آ�ـ�، ا��8�.\ ا��"د�� ا��� 4 �[L	G&� L )�b"ود رAD آ�ا^3فا���ارة 
≤ 5x104   �>"ا��
 ADر W%Pr=0.72  /�و <3)� إ�` ان رAD �:ـ	> ا��b3�� ����" آ	&ً� 4	` زاو�� ا��&�ن و 3�%�ـg رAD �:ـ	> ��8�

Wb ا���2 �	��ص %:9( إ�` ا�4	` آ�� ان <�l&� ا���C ا�"ا+	� �:�/ ز��دة %�"دة �2 %�"�ت L �2��� ا�W%1/5 3 رAD آ�ا^3ف �iس 
و
&8> ا�"را�ـ� ان 3�%�ـg . ا��'�` ا����ل ا���ارة L �2��� ا��	��ت ا��:�89 إ�` ا�4	` 
&�8� <@3ن أآ�l> �7&�اً L �2��� ا��	��ت %:�89 إ�

D]` أ�&�ن 4( ا�52 و�:�� ا���C ا�"ا+	� إ�` ا�9�ر�6 �	�	��ت ا���.	ـ� ا��:�89 إ�` ا�4	` وان رAD �:ـ	> �Bداد 
�B�دة آ� %( زاو�� ا�
3�ـg رAD �:	> � ����" 4	` زاو�ـ� ا��&�ن 
� �@3ن <S�&v %���"اً 4	` �:�� ا���C ا�"ا+	� إ�` ا�9�ر�� �6	U ا��	��ت��� ��&D.  

� ا����� ����ً� 
"را�� �4	&� ا��� ��
�� و أ+�ى ذات ��/ دا.�ي و ذات اه�A ا��% ��&'[� �D��Cا��� ا� �����
�ل ا���ارة 
7�3ت در�L �6ارة ا�:kC و L �2��ت %�9	'ـ� أ�2&� و 3�4د�ـ� و %�.	� 4( ا�52  ( Extension surface ) أ�kC ا%�"اد
 �89:%

� �@3ن ا�H63 ا��:9( ��3 ا�4	` 84" ا�Bوا��  &L ، �'	�9% �وا�B
0o≤Φ<90o  و   �وا�B84" ا� �'��@3ن ا�H63 ا��:9( ��3 ا�
90o<Φ≤180o   . �����9"ام ا���آ��  �L ا����د�ت��A �2 ه�ا ا��
دا�� ��� ا�"وا%&� و وL:�ب آ� %( ا��� ا��"دي ا����7 ا�
��د 

�Iإ� A� )%و ��b3ا�� <	:� ADر Wد <3ز��Iو إ� ��"�

����4�د 4	HI�% ` ا�GI" ا�@�%( و در�L �6ارة ا�:kC ا�� �C�د H��&D ا���3
ا�3Cل ا���&B �	]'&�� و <A ا+�&�رS �&@3ن 3Fل b	W ا�]'&�� ا���
�� ، و درا�� <��C8% �&�l ا��']�ل ا���اري 4	` %�"ل ا����ل 

 ��G8&
   .ا���ارة وذ�U �	]'&�� ا���
�� و �	]'&�� ذات ا��7/ ا�"ا.�ي و إ�=�ح ا�'�ق 
  


  ا
	��د�ت ا
��آ	

را�� %:��l ا����ل ا���ارة �I/ ان ��]� أو� 4	` %��د�ت L'� ا�@�	� و ا�A+B و ا�C�� �D	��W. ا���
� �v=�i�ط  ��vض د
(Torrance 1985) :  

  

0)(.. =∇+
∂

∂
q

t
EC

v
ρ

ρ
                                                                                       (1) 

gPq
Dt

qD
EM L

vv
v

ρµρ +∇−∇= 2..                                                                       (2) 

genqTk
Dt

DP
T

Dt

DT
cpEE ′′′++∇∇=− µφβρ )(..                                           (3) 

� ان &L  

∇+
∂

∂
= .q

tDt

D v
: the substantial derivative, ).,( wvuqq =

v
:velocity vector, µφ : viscous dissipation 

function, genq ′′′ : heat generation , g
v

ρ : body force. 
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� ،ا�$�9"%> ا�'�b$&�ت ا����&$�      $���&� �	�:D ��l&$" ا���در6$� ا��$�ارة ��
�$� �@$� %$( ا�:$kC ا��:$�3ي         : ��vض ا^���ق ا����د�ت ا�
(Tw) $$و ا��� g&(T∞)    ارة�$$L "$$&�3> "$$63� � ،ط�v$$=�i� �$$
�D �$$&t و �D�$$�F W.�$$ن ا�����6،0$$=′′′

genq   ، )>3$$&� )&3ا�$$�� W$$b�+ W.�$$ا�� ،

� ا�@7��2 �2 ه�ا ا��$" ه$3 ا�$�ي �:$�/ �Lآ$� ا��$�.W، اه�$�ل دا�$� ا���r$�ر           &L 3'C3ة ا�D "L �2 �2�7@)&� ا��4"ا + ��
�� W.�3اص ا��+µφ  

�/ ا�:��4 ا�]v&�ة 6"ا �	��.W ، اه��ل ا���"ار:

Dt

DP     زات�$v	� 6"ا �&v( H�� .         W	$b 3ل$F 3$ه �$�ان ا�C$3ل ا���&$� B	�D  ��l$:&$" ا�"را

  �$$�

�"�$$� <�$$�ف ا���$$�د �(H)	]$'&�� ا���� �&$$[
 ��l$$:�	� �&$$����� ا��
�"�$$� ا����&$$�  آ�$$� 2$$� ، و�v$$�ض آ��
$$� ا���v&$$�ات و ا���$$�د�ت ا�
)2003 (Hassan وا��]"ر (Chow,Wilely & Sons 1979)  .  

  
HxX /= , HyY /= , HzZ /= ��ت ا
	�����ة �)/( ا���ا 2

Ht ατ =  �� 
 ا
ααα /,/,/ wHWvHVuHU ===  
!"�
)/)(/(2 ا αρ HP ∞=Ρ  #$%
 ا

23 /)( υβ HTTgGr W ∞−= )()/( ر*( آ"ا)'ف  ∞∞ −−=Θ TTTT W
 در,
 ا
�"ارة 

αυβ /)( 3
HTTgRa W ∞−=  -
αυ ر*( را /Pr =  ر*( 1"ا�0/. 

                                                              
         �$�"�
��9"ام ه�S ا����د�� ا�� �

��]$&�v ا��
�"�$�    %��د�$� ا�C�D$�    و%�$�د�ت  ا�$A+B     ��@$(  آ��
$�  %�$�د�ت  L'$�  ا�@�	$�  و      

                                                              :ا����&� 
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 ���2

 و دا

 ��54 ا
�34 ا�  ���د�ت �0. ا
�وا�

� ه$$� %�$$�د�ت 
"��$$� ا���v&$$�ات         $$��]إن ا���$$�د�ت ا��$$� وb$$�> 2$$� ا�B$$Iء ا�:$$�
5 %$$( ا� ]Θ,,,, PWVU   `�$$:> �$$و ا��

$$�)ـ��&� او ا��$$ـ���"ة و ��@$$( ا�9�$$	L )$$% Y$$ـ"ود ا�=vـ$$ـg  ا���v&$$�ات ا� )P   و yآ�ـ$$��% �@$$r
 Aـ$$+Bد�ت ا��ـ� %�$$$$	b�'% 5ـ��$$F )$$4
  :    L�F(vorticity transport equation)ـG� �	ـ�]3ل 4	` %��د�ت <"4ـ` %��د�ت ��� ا�"وا%&ـ�
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  .و<��د ا���	&� ��&A %�9	'� %( رAD آ�ا^3ف 
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�1"	

 ا��BC
  ا
�103�&( L��ـ� ا�����ار �3C9ط ��3ت در6ـ� ا���ارة ا��
�"�� ��AD آ�ا^3ف  (5)ا�rـ@�   �&$Gا�� g�8ل ا��$�ارة   و ا��$���� )
&(3���
 �7����R.F.Boehm & D.Kamyab(1977)       �$&	�2$� ا��3 ا��$�� B$4$( ا���آ �ً&$	D 3طC9ا���اف ا� �L�� و ،   ��&'$[	�

� <�<'$$L ( W$$"وث ا��']$�ل ا��$$�اري ( (Plume)و 
�B$$�دة رA$$D آ�ا^$3ف ���l$$> �$$G&� ا���$$� واb$�ً� و <�@$$3ن ا���r$$�   . ا���.	$�  $$&L
^$3ف  n�B6�ت ا���.W ا�:�+8ـ� ا��D ا�@7�2ـ� ���ـ� %�	G� n�B6�ت ا���.W ا���ردة ا�آ�7 ا�@7��2 و ا���د%� %( �C8%ـ� ا���C��� �AD�$ آ�ا 

�3ط ا�n�BI�ت ا���<'�� ��"ث 4 gvb	3C+ `ط ��$3ت در6$� ا��$�ارة ا��
�"�$� �C8% �$2$ـ� <@$3ن ا���r$ـ� �&�$"ث           و.  104G� ًا���
� n�B6�ت ا���.W 4$ـ8" ا���آ$��> B	U$ أ4	$` درL �$6$�ارة 4	$` ا�:$kC �2@$3ن           G&2 �[9>5x104� و ه�ا واAD�� kb آ�ا^3ف &L ،

:��4 اآ�� %�"�� <9	�9 �2 ا�=gv 84" ا���آW2"8�2 B ا�n�BI�ت  ا��I$�ورة ���$� %�	G$�    آ7�G�2� ا�D %( ا�n�BI�ت ا��I�ورة ��2< W'

��� ا����+�� ا���ار�� 
�B�دة رAD آ�ا^3ف �	]'&�� ا��2&� ا��:�89 إ�` ا�4	` Cا� U�� U��

��آ� أB&2 �&�2داد .  
 104 ا��
�"�� L �2��� ا�����ار ����D آ�ا^$3ف  إن <�l&� زاو�ـ� إ%��� ا�]'&�ـ� واbـ4 k	C+ `ـ3ط ��3ت در6ـ� ا���ارة

� ��"ث ا��']�ل ا���اري 32ق ا����2 ا��	&� �	]$'&�� ا���.	$� و <gv$=8 ا�C9$3ط ����$�ب %$( �$kC ا�]$'&�� ا���.	$�           5x104و &L
��� ا����+�� ا���ار�� ��� 
�B$�دة رA$D آ  Cا� U��. �ا^$3ف �	]$'&�� ا���.	$�   
�B�دة زاو�� ا��&� و <gv=8 اآ�7 
�B�دة رAD آ�ا^3ف ، 

<@3ن +3Cط ��3ت در�6 ا���ارة ا��
�"�� 32ق ا�]$'&�� ا��2&$� وGG6$� ا��:$ـ9( إ�$` ا��$'� اD$� ار<'�ً$4� > )$%	U$ 2$3ق ا�]'&�$ـ�             
�ـ� إ�` �kC ا�]$'&�� ا��:$ـ�89 إ�$`    ��D �2 <@3ن�ا�@7 �	&	+�8 ا���ت ا�:ـ�n�BIآ� ا��L ` �ن	ا��:ـ9( إ�` ا�4 �GG6ا��2&� و  �'$�ا�

  . (5)ا��� ا�r@� �2 ��"ث ا��']�ل ا���اري 

و ��L$� ا��r$ـ�ر +C$3ط     (6)%�&8$ـ� 2$� ا�AD�$�3 10    �@$r آ�ا^$3ف     2Ωو L1Ω��� ا�ـ���ار +3Cط ��3ت دا�ـ� ا�"وا%&$ـ�  
و�@$( L �$2��$� ا�]$'&�� ا���.	$� وGG6$� ا��:$9( إ�$`           Z-Y و  Z-X  دا�� ا�"وا%&$ـ� 
���$8��x 2$3ق ا�]$'&�� ا��2&$� 2$� ا��:$ـ��3&(        


���$"ر�\ ���$� %�	G$� ا�"وا%$� ا��63�$� %$2Z-Y              W$� ا��:$�3ي    1Ωا�4	` 2�ن A&$D دا�$� ا�"وا%&$�     ��� <�9'$� ا�"وا%$� ا�:$��$&L �$�>
W$'>�> �$2 %$( 2$3ق L�2$� ا�]$'&�� �&�$"ث <9	9$� 2$� ا�=$gv �2$"+�            �ن n�B6�ت ا���.W ا�:�+�8 ا��	&	� ا�@7�90o و)3ل زاو�� ا��&�

�G	�% ���� ��&'[ا� g��� 4	` دا�� ا�"وا%&�  Z-Xأ%� �2 ا��:�3ي . n�B6�ت ا���.W ا���ردة ا�` و��vر ه� ا��rن )'� ا����2.  
�/ ز��دة ���4 ا���.W ا�:� و:
 �G4�'>دة �2 ار�ز� �دة �2 ^"ة ا�"وا%&� و أ�=ً�ز� �L�� )+)3'C3ة ا�D دة�ع  و  )ز��داد ار<'$B�

��$�ت ا��	&$� ا���&$"ة $4( �$kC ا�]$'&�� ا��2&$� و$GG6�             5x10 4ا�"وا%�ت 84" ز��دة رDـA آ�ا^3ف Cت %��$"دة 2$� ا��3ر دوا%$Gx W%
�/ ز�$�دة    ا��:9( إ�` ا�4	` و ا�"2�ع +3Cط ��3ت دا�� ا�"وا%&� 
�<I�S ا���.W ا�:�+( ����$� ا�]$'&�� ا���.	$� و ز�$�دة �$2      $:
 �G>"ـ$^

 W.��4 ا����.  
       �@rآ�ا^$ـ3ف      (7)ا� AD�$� )%�$@ا� "$GIا� HI�% ـ���ار���L$� ا�ر<'$�ع ا��:$&H$I�% A&$D �$2 g ا�GI$" ا�@$�%( و          103 ��&( L��� ا

Bد %�آ���
104
�B�دة رAD آ�ا^3ف إ�`  .ا���آ� 4( �kC ا�]'&�� ا�8>  �&�2��x ا��r�ر ا�3C9ط و ا �% A&D W'>�>  )%�$@ا� "GIا� HI
و <��$�رب ا�C9$3ط �C8% �$2$� ا���r$� ،�ن ا��$�.W ا��:$�3ب %$(          103
��"ار +�y %�ات HI�% A&D )4 ا�GI" ا�@�%( ��AD آ�ا^3ف 

  �$rا��� Bأن �]� إ�` %�آ ��D ع�ر<'��
�"أ � �

��"+3ل إ�` و�g ا�]'&��  ���:� � ���C���/ ز�$�دة      (32ق ا�$:
 3$'C3ة ا�$D دة�ز�$

<$Bداد  . %��ر�� %W ا�]'&�ـ� ا��2&� وGG6$� ا��:$9( ا�$` ا�4	841Ψ      `$" إ%��� ا�]'&�� <�� HI�% A&D ا�GI" ا�@�%( ) . 3فرAD آ�ا^

ا���آ$� %$( �$kC     32ق ا�]'&�� ا���.	� وGG6� ا��:9( ا�` ا�4	` ، 
�B�دة زاو�� ا��&�ن ����ب %�آ$HI�% A&D2Ψ  B ا�GI" ا�@�%( 
� �@$3ن    $&L �'$�ا�]'&�� %W ز��دة �2 آ7��2 ا�3C9ط �Dب �kC ا�]'&�� و 32ق ا���C��� و)3ً� �	]'&�� وGG6� ا��:9( ا�` ا�

<$Bداد   HI�% 5x104 ا�GI$" ا�@$�%( �$�AD آ�ا^$ـ3ف     D&�� ان . <@3ن ا2Ψ  �D%�آB ا���آ� 32ق ا���C��ـ� و HI�% A&D ا�GI" ا�@�%( 
    W.�$ت ا���$n�B6 ع�` �ر<'$	ة 4( ا�]'&�� ا��2&� ا��:�89 إ�` ا�4"&����� ا��	&� ا�Cو �2 ا� �rا��� ��C8% �2 3طC9	� �7رب اآ��> W%

���C��  .ا�:�+�8 
:��4 4��&� وا��"ار n�B6�ت ا���.W ا���ردة 
:��4 4��&� إ�` ا��'� %( �G6 ا�
  


@�D	

 ا��BC
  ا
   �@r(8)ا� �� )&���L ار���� ز�$�دة H$I�%،  �$L��   �$2 ا�GI$" ا�@$�%(   و  +C$3ط دا�$� ��$� ا�"وا%&$�    و  در6�ت ا��$�ارة ا��
�"�$�   ا
4	$` ا�:$kC ا��:$9( و ��G$� ار<'$�ع �	��r$� 2$3ق %�8]$� ا�]$'&�� ا���7�$� ا��2&$� ا��:$�89 إ�$`               در6�ت ا���ارة ا��
�"�� ا��"ار

HNu
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4	�l> Z  `&� 4"د ا���" 
�<I�S اLp"ا��  (3)^@� 
 <	:� ADر g�   AD��.Gr=104 آ�ا^3ف 3�%
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� اآ�� 3Dة F'3 و �@3ن ا���"ار &L `	4ر�6    ا��ا�]$'&�� ا�9$ g&$�% �$�Bداد و 
�B$�دة �:$�� ا���7&$/ �$    . اآ�� 84" ا����2 ا�9�ر6&� �@

�B$$�دة زاو�$$�   آ�$$� ا���$$"ار 2$$3ق �$$kC ا�]$$'&�� �$$���$$� ا����+�$$� 2$$3ق ا���2$$� ا�9�ر6&$$� �	]$$'&�� ا���7Cا� U�$$���L$$� ��]$$�ن �$$2 

�� <2Ω   /$&�7و  3C+1Ωط دا�� ��� ا�"وا%&� و %( %���L.ا��&�ن:8
 ��ان %�آ$B ا�$"وا%�ت اD$� ^$"ة %$(       �I$"  �0.6	]'&�� ا���7
  &$$$:
 �@$$$r

�B$$$�دة �:$$$�� ا���7&$$$/ا�$$$"وا%�ت 2$$$3ق ا�]$$$'&�� ا���
�$$$� و <�$$$� أ�=$$$ً�  g آ �$$$L�� �$$$��$$$2�72$$$� آ  "$$$GIا� H$$$I�% 3ط$$$C+

�� <�7&/ أ�kC ا����دل ا���اري  �Dب 2Ψو1Ψا�@�%(:8
 ���/ ز��دة ���4 ا���.�B� W�دة 3Dة ا�C'3 0.8و  �0.6	]'&�� ا���7:
.  
  

-�E'	
  ر*( F��0 ا
  �@r(9)ا�   <	$:� ADان ر �L�� و ،�x�8ا�� g+ "84 آ�ا^3ف ADدة ر�دة زاو�� ا��&� و ز���B
 ��b3ا�� <	:� ADر �&v> kb3�

)@�� �% ��� ا���"ار ا�@�&� �2 در�6 ا���ارة  ا��b3�� �@3ن اآ&L �&�2��2 ا�]'&�� ا��L "84) �$&	D ��+�ا��� ���Cا� U��و$84"  ) 
ا���Dاب %( ا���آI� B" <3ز�W در�6 ا���ارة ا��
�"�� ���I&�� �&v ���']�ل ا��$�اري ا�$�ي ��$"ث 
$����ب %$( ا���آ$$�% B� �w$دي         

   $84 �$�"�
�$kC ا�]$'&�� ا��2&$�    إ�` ا��"ار D	&� �2 در�6 ا��$�ارة ا�� "   �$2 /�و . �$"ار %��%$� ا���$�ل ا��$�ارة ا��b3$��     ا�و ا��:$
 ��
�B�دة �:�� ا���7&/�	]'&�� ا���7 ��b3ا�� <	:� ADر ��&D ع�ار<' �L�� . ��&'[	� �&	+ت ا�"ا�2�84" ا�� ��b3ا�� <	:� ��&D إن

  /�$:
��$� ا����+�$� ا���ار�$� 84$" ا���2$�ت ا�9�ر6&$� و ا�$�ي         ا��2&� ا��:�89 إ�` ا�4	` <@3ن ا�D %( ا���2�ت ا�9�ر6&� Cن ا����6$

�B�دة رA$D آ�ا^$3ف    ��G8&
84$" %��ر�$� A&$D رA$D �:$	> ا��� ��$b3	H84 \�8�.        ��&'$[ ا��"ار آ�&� �2 در�6 ا���ارة و �Bداد ا�'�ق 

�B�دة � W'>�> و ���� ا���7&$/ و ��L$� أ�=$ً� ان ا�]$'&�� ا���3د�$�      ا���
�� ا���7�� و ا�]'&�� ا���
�� �I" إ�G� أ4	` �	]'&�� ا���7:

 ��b3ا�� <	:� AD�� A&D `	4أ U	�>.  
  
  ��"�

���&A ا�� ��b3ا�� <	:� ADد�� ر��% �
 :��@( آ��

       
0=∂

Θ∂
−=

z

H
Z

Nu                                                                                                    (37) 

     �
�� �
� ��� �(37)  *��� +��, �����,� �����
� -�.��(
� ����*�  :  

  )291811(
)6(

1
)4,,()3,,()2,,()1,,( jijijijiH

Z
Nu Θ−Θ+Θ−Θ

∆
=                                   (38) 

  
 -
1�� ��'G# ر*( F��0 و ر*( را 
�E�9"

 ا*H�
  ا

� �
�� � ����� 	� � ���
� ���()�
 -��� /.� *���� 0�# �)��� 1��
� -���  :آ�� �	�  ./ 

                                      (39) ΥΧ
Ζ∂

Θ∂
−









−

== ∫ ∫∫ dd

r

dANu
A

Nu

H H

A

HH

0 02

4
1

11

π  

��9"ام ا��@�%� ا��"دي 
����4"ة ا��
�4&�  8�ُّ'�ا��@�%� أS�4 ��@( ان ان �
(trapezoidal rule)      2$� ا��]$"ر �آ�) (Gerald 

1970 .  
 :�	]$$'&�� ا���
�$$� و ا�]$$'&�� ا���7�$$� ���9	$$� زوا�$$� ا��$$&�ن 
�����د�$$� ا����&$$�   ��@$$( <�7&$$� 3�%�$$g ر$$:� A$$D	W$$% < رA$$D را�$$�   

b
H RacNu � ان  =1&L1c  <

> <���" H��&D 4	` زاو�� ا��&� �	]'&�� و ا�7���b     H$��&D را��  و AD0.2ه3 أس ر   �$�&D و ،

 <
�&�8 �2 ا�I"ول  c1ا�7�%(1) 
�7	� ��&D `	4ان أ �L�� و<  c1      �$�2ا� W$b3ا���3دي و <�$� و)$ً� إ�$` ا� Wb33ن 84" ا�@� .  A$> و
3�%�$g رA$D �:$	> 4	$` رA$D را�$� %�2$3ع إ�$` ا�س             ا���8�ج �$G&2 "$���� �$D�4b=0.25         `$ا��:$9&( إ� ����$L �$2 �$	.�ا�� ��&'$[	�

b :      ا�4	` و إ�` ا��'� و L:/ ا����د�� ا����&� 
H RacNu )sin(2 Φ= ان ا <
�7�c2      3ن$@� �$�D�4 �2�ت ا�]$'&�� ا���7

�&A&Dc2  �2 �8 ا�7�
>  .أ4	` %( ا�]'&�� ا���
�� و �Bداد 
�B�دة �:�� ا���7&/ %�@rد . (10) ا��Iا� A> و   W$% <	$:� ADر g�3�% �D�4
�� ا���7&$/    
ا��&� ا���9	'�  رAD را�� �	]'&�� ا���
�� و �	]'&�� ا���7�� L �2���� ا��:9&( إ�` ا�4	` و إ�` ا��'�  �Bوا��$:� �&�l$�

r   �&��د�� ا���ا��� /:L و :
b

H RarccNu )sin)(( 32 Φ+=   

 :�	]'&�� ا��:�89 ا�` ا�4	` 
25.0)sin)(413.0597.0( Φ+= RarNu H  

 �'� :�	]'&�� ا��:�89 ا�` ا�
25.0)sin)(423.0604.0( Φ+= RarNu H  
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�( ا
1�D) 1(,�ول                                  * ��@9 Fc1  

  

  �	]'&�� ا���
��  زاو�� ا��&�
�	]'&�� ا���
�� ذات ا��7/ 

  0.6ا�"ا.�ي 
�	]'&�� ا���
�� ذات ا��7/ 

  0.8ا�"ا.�ي 
0o 0.784  1.012  1.230  

30o  0.837  1.117  1.369  
0o6  0.924  1.231  1.498  

90o  0.962  1.277  1.553  
120o  0.935  1.246  1.521  

0o15  0.856  1.158  1.429  
0o18  0.780  1.085  1.361  

  
  

 J��D�

 ا@�0 "��8/)r (  F��0 )*ر #G'�� K�!  
       �@rآ�ا^$3ف       (11)ا� �$�D�� �$'	�9ت ا��&$� ا����ا���7&/ و��$ ��:� W% <	:� ADر g�3�% �&v> kb3� 104 5 وx104  �$L�� ،


�B�دة �:�� ا���7&/ وذ�U �ن 
363د ا��7/ <	:� ADر g�3�% ��&D دة�ل ز��ل ا��$�اري ا��$�     �2 ا�^@�ا��']$ ��C8% )% Y	9ا�� A��
    A$Dر g$���� ا����+�� L "84�2�ت ا�]'&�� ا��� <wدي إ�` ز�$�دة 3�%Cن ا��اب إ�` ��6��Dا� A�� و ��
<�@3ن 84" %�آB ا�]'&�� ا���

3�%�$g ر$:� A$D	L �$2 <��$� ا��      . �:	>  �$�&D دادB> ��:$9&( إ�$` ا�4	$` و �]$� إ�$`      و 
�B�دة زاو�� ا��&�ن �	]'&�� ا���
�� و ا���7
 �'�
�B�دة زاو�� ا��&�ن L �2��� ا��:9&( إ�` ا� <	:� ADر g�3�%�g . أH� ��&D A�4 84" ا�Wb3 ا���3دي و ��� 3�% A&D ان �L��

 �'�ا�Bاو�$�  8$"  �@3ن �C8%$� ا��']$�ل )$v&�ة 6$"اً و<�9'$� 4     رAD �:	> <@3ن أ4	` �	]'&�� ا���.	� ا���7�� L �2��� ا��:9&( إ�` ا�
180o.  

  
   J��D�

 ا@�0 "��8/)r (  -�2
9��1
 اH
  !�K ���ل ا���0ل ا
�"ارة ا

�� ا��5x104  �$L�� ، /&�7 و  104ـ� ا�@	� ����D آ�ا^ـ3ف���&( %�ـ"ل ا����ل ا���ارة ا��
�" (12)ا�rـ@�          :� W%   `$[Dإن أ

$���At %$( ا��B$�دة �$2 3�%�$g       0.8وا�� ا��&� ا���9	'�  و <�� 84" �:�� ا��r=0.6  B�  /$&�7آ�&� �Lارة %��8	� <@3ن 84" �:�� ا���7&/ 

�/ ا��8]�ن :% �2��L ا�]'&�� و ان ه8�ك <:�وٍ �@�&$� ا��$�ارة ا����8	$� 84$" زاو��$� ا��&$�       :
 Uو ذ� <	:� AD30رo 180وo    ��$:8�
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5
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ABSTRACT 

In adjustment of geodetic and photogrammetric networks, the surveying engineer faces many 

problems, such as errors of blunder nature in the observations (when comparing the homogeny of 

precision) make these observations odd from the result, and effecting directly on observation values after 

adjustment, and the statistical results after analysis as, adjusted coordinates of points, standard deviations, 

and ellipse of errors. 

The research is deal with some of the most common usage of statistical methods to detect these 

odds observations to confirm which best method is, by studying the advantages and disadvantages of each 

method to geodetic network. 

 Three statistical methods will use in the analysis, these are:- 

1. Standardized residuals method 

2. F-t test 

3. Robust estimation method 

The adjustments were accomplished by preparing a Matlab program with the three blunder detection 

methods and the results were evaluated and some scientific conclusions were reached. 

It was found that the robust estimation method represent the better blunder detection technique due to its 

ability in what is called (multi-blunder detection) , and the resulted higher accuracy indices. 

 

 الخلاصة 

ٍرا َجرُد طاءراا راث غرالط  هءر  مى مرُسجمهت مه الأ تانمساحمٍىذس تصحيح انشبكاث انجيُديسيت َشبكاث انتخهيج انجُي تعتشض عىذ 

الاسصراداث  ف  لعط الاسصاداث )عىذ مقاسوت تجاوس انذقت( تجعم مه ٌزي الاسصاداث شارة عه انبقيت ,َترثحش لصرُسة مباشرشة عهرم قري 

 لأاءرااالاٌهيهيجر  نانشركم  اظافت انرمالاوحشافاث انمعياسيت َنمصححً نهىقاغ االإحذاحياث صحيح َانىتائج الاحصائيت لعذ انتحهيم كتلعذ ان

 انىاتجت.

لاقرشاس انءشيقرت الافعرم مره ار ل  انشصرذاث انشرارة ٌرزي َانمستخذمت نهكشر  عرهانشائعت نءشق الإحصائيت مه ا تمجمُعانبحج  يتىاَل

 احصائيت متمخهت لالات :غشق  تح ح نشبكت جيُديسيت .حيج ااتيشث دساست محاسه َ مساَئ كم غشيقت

  (Standardized residuals method)  غشيقت انبُاق  انقياسيت .1

   test (F-t) غشيقت ااتباس .2

 (Robust estimation method)  هغشيقت انتخميه انمتي .3

نكشر  عره انشصرذاث َا هحصرُل عهرم لعرط الاسرتىتاجاث انعهميرتنتخمريه انىترائج اجشاا انتصحيح َ ت   (Matlab) لهغت َلاعذاد لشوامج

 .انشارة لتءبيق انءشق انخ ث طع ي
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تمخرم طفعرم تقىيرً فر  انكشر  عره انشصرذاث انشرارة اسرتىادا  نرم  ( Robust estimation method) َقذ َجذ ان غشيقت انتخميه انمتيه

َلسبب انذقت انعانيت انت  تُفشٌا ٌزي انءشيقت مقاسورت  (multi –blunder detection) قالهيت انءشيقت ف  انكش  انمتعذد نهشصذاث انشارة

 .لأاشييهمط انءشيقتيه ا

 

 

KEY WORDS 

Blunder detection, Geodetic Networks, Robust Estimation, Standardized Residual. 

 

INTRODUCTION 
When computing and adjusting geodetic networks, It is quiet important to ensure that the 

considered observations are free of blunders and systematic errors, and therefore the results are only 

affected by the random errors which presented in every measuring process. 

Obviously, precaution in the observation process has to be the first step to avoid undesirable error 

appearance. Moreover, an adequate data filtering previous to the adjustment, checking reciprocal 

observations, and closures even with more detailed schemes is a suitable routine to be adopted in order to 

detect and eliminate the wrong observations. 

Blunders or mistakes could be defined as obviously incorrect data points or results that are not 

reasonably close to the expected value. Some blunder or systematic errors may slip into the adjustment 

process. So it would be interested to deal with the subject that deals with the blunder detection. 

 

BLUNDER DETECTION METHODS 

The used methods for blunder detection will be explained theoretically and mathematically as follows: 

 

Standardized Residual 

The detection of blunder among the observations was treated using a technique pioneered by the 

geodesist Baarda (1968). In Baarda’s method a statistical test which is called as Standardized residuals 

used to detect blunder [Baarda, 1968]. 

Blunders will affect the observations badly and produce incorrect estimations of the unknowns and 

their covariance matrix. If the blunders are detected by a statistical test, then those contaminated 

observations are removed, the network is re-adjusted, and we obtain the final results. 

 

This method of standardized residuals, detect one blunder in every iteration and remove it from the 

observations, and readjust the network with the original observations, the iterations continued until 

remove all blunders and until the chi square test (
2
) passed depend upon the significance level, variance 

and the degree of freedom. The method also depends on computing the variance-covariance matrix of 

residuals vv . 

The standardized residuals are computed as:  

     
ii

i
i

q

v
v                  (1) 

  Where  iv  is the standardized residual, 

   iv   is the residual, and  

   iiq  is the   diagonal element of  the vv  matrix. 

 Since a computed parameter divided by its standard deviation which is a random normal variable, 

we can compute a (t) value as:  



Journal of Engineering Volume 13  June 2007        Number 2  
 

 

 1487 

      
00

S

v

S

v

qS

v
t i

v

i

ii

i
i

i

                (2)   

 However, this equation should be based on "good "value for the reference variance since a 

blunder automatically affects the value of 0S , the method summarized as follows: 

1) Locate all measurements that qualify for rejection. 

2) Reject the single observation with the largest standardized residuals. 

3) Repeat adjustment 1& 2 until all observations qualify for rejection are rejected, and until 

(goodness of fit) pass. 

Robust estimation method  

The method is the latest method for blunders detection, that was obtained by scientist Huber in 1981 

[Huber, 1981] and developed in 1990's [Francis, 2004]. The basics of this method are depending upon the 

original weights of observations. 

 

Ordinary Least square adjustment is not sensitive to the blunder in the observation. From the Figure 

(1) below, it could be noticed  how the regression line of least square dropped to the blunder points ,and  

affect the regression line by this amount ,but if we use the method of robust estimation that resistant to 

blunder the problem will be  very different . 

 

The regression line by both ordinary least square method, and robust line fit shown, and it could be 

noticed how the blunder point could not affect the regression line of the robust estimation method, and 

how affects on the least square line regression.  

Robust estimation method will treat the  blunder from a new view of point, which  will compute a 

weight  through  a special  function  upon the scientific function  which detect blunder and give  a correct  

result, then  treat the blunder. 

 

One can notice how the blunder points dropped the least square line towards the blunder points, how 

the regression line of robust estimation is canceled the blunder point and how resistant the dropping of the 

blunder point and did not let it to affect the line of regression. 
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Fig (1). robust regression line and  ordinary least square regression line  (with one blunder). 

 

Specifies a weight function, a tuning constant, and the presence or absence of a constant term. The weight 

function can be any of the names listed in the following Table (1). 

 

 

Table (1). Weight function used in robust estimation function. 

 

Tune 

constant 
Meaning 

Weight 

function 

1.339      rrrabsW /)sin())((   Andrew 

4.685      22 )1())(( rrabsW   Bisquare 

2.385      )1/(1 2rW   Cauchy 

1.400      ))(1/(1 rabsW   Fair 

1.345      ))(/(1 rabsW   Huber 

1.205      rrW /)tanh(  Logistics 

2.795      ))(/(1 rabsW   Talwar 

2.985      )exp( 2 rW  Welsech 

 

Procedure for robust estimation method could be summarized as follow: 

1) Solve as ordinary least square method 

2) Solve for hat matrix Ĥ (covariance of observations) 

 

Where: 

  tt BBBBH  1)(                        (3)                                                                                                    

3) Compute r  

 

)-1( ii

i
i

hstune

V
r


                                                                                                 (4) 

 

Where: 

iV : the residuals of observation i, 

 tune: the tuning constant from table (1), 

 s: an estimate of the standard deviation of the error term. s = MAD/0.6745, and 

iih  : the vector of leverage values (diagonal element of the hat matrix H). 

      

The quantity MAD is the median absolute deviation of the residuals. The constant 0.6745 makes 

the estimate unbiased for the normal distribution.    
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4) If the value of ir  is greater than rejection level, then this observation is considered as a blunder, 

and it must be down weighted to a new weight according to the weight function in the table above. 

 

5) Readjust according to the new weight. 

 

F-T TEST METHOD  

It is one of the traditional methods for detecting blunders; it was presented by the researcher Xu 

Pieliang. The basic of this method depends upon the tests F-t. Initially F test used for the global test and 

then t test to check for each blunder immediately after an F test. The U statistics here is actually the 
2
 

statistics given by Stefanovic [Xu Pieliang, 1987]. 

 

Compared with an F test or (
2
) test, this method is convenient for testing each blunder after the global 

test, and makes it possible to discuss the relationship of significance levels between the global test and the 

test of each blunder. 

 

Let the mathematical model be: 

 

   VBL                                                                                                                                   (5) 

Where 

B: the design matrix, 

L: the observational vector with the weight matrix W, 

Δ: the vector with u unknown parameters, and 

V: the normally distributed error vector. 

 

If there are blunder in ( l ), eq. (5) is rewritten as: 

111 VBl                                                                                                                                  (6) 

 

2222 VlBl                                                                                                                       (7) 

Where:  

1B : a matrix with full column rank, 

 1l : a no-blunder observational error, 

2l : may be considered to be a vector containing some blunders ( 2l ) after the initial       

identification, and 

V1 and V2 are the normally distributed error vectors of ( 1l ) and ( 2l ), respectively. 

 

         The ordinary least square solutions are: 

 

)()( 111

1

111 lWBBWB tt                                                                                                                            (8) 

xx
=

1-

111 )( BWB t 2                                                                                                                                  (9)                                                                                                                                                                                                                    

)(ˆ
111

2 umnVWV t                                                                                                                        (10) 

111 lBV                                                                                                                                             (11) 
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Where  

1W : the weight matrix of ( 1l ), and  

 n: total number of observations, 

       The predicted vector ( 2l̂ ) of ( 2l ) is:   

111
1

111222 )..(ˆ.ˆ lWBBWBBBl tt                                                                                                        (12) 

For each element ( 2l̂ ) of ( 2l  ) (i > n-m): 

              111
1

111 )(ˆ lWBBWBBl tt
ii

             (13) 

 Where   

iB : a row vector of 2B . 

The predicted residuals vector is therefore (denoted by 2V̂ ) 

 22222 -ˆ-ˆ BlllV                                                                                                                 (14) 

For each element of  2V̂          

 iii BlV -ˆ
                                                                                                                               (15) 

If ( 1l ) and ( 2l ) are unrelated, ( 2l ) is unrelated to Δ, thus we can get from eq. (14) and (15) 

)ˆ()( 22 lDlDvv 
           

              2

2

1

1112

1

2 .)(   
vv

tt BBWBBW                                                                                                  (16) 

21-

111

1- ])([ t

i

t

iivv BBWBBW 
                        (17)                                                                                                      

To test if blunders exist in 2V̂  we test the zero hypotheses: 

           02  LHo                                                                                                                            (18) 

When a priori value of the unit weight variance is known, the quadratic form: 

 

            )(~ˆˆ 2

2

1

2 VVU vv

t                                                                                                                 (19) 

If eq. (18) is correct the noncentral parameter (δ) of U is equal to zero; otherwise,  

22
1

2 )ˆ( LVDLt   .                       (20) 

 In fact statistics U is Stefanovic’s 
2
 tests. 

 

Now we further establish two statistics, denoted by F and t, respectively [Xu Pieliang, 1987]: 

2

2

1

2

1

1112

1-

22

22

ˆ/ˆ])([ˆ

/ˆ//





mVBBWBBWVF

mUF

ttt




                                                                               (21) 

~F (m, n-m-t) 

Using eq. (21) we can conveniently test whether ( 2l ) contain some blunders. When the zero hypotheses 

are rejected, further testing is needed to determine which ( 2l ) is responsible.  

Therefore establish the zero hypotheses for each elements of ( 2l ): 
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   02  LHo                                                                                                                           (22) 

 

It is clear that when eq. (21) is correct, 

 
22 /ˆ/ˆ vvvt 

                                                                                                                (23) 

~t (n-m-t) 

After the F test, the t test can therefore be used to detect blunder in ( 2l ). It is not difficult to see 

that a (t) test makes it easy to test each element ( il ) of ( 2l ). 

The steps according to this method may be summarized as follow: 

 

  1) Initial identification of blunders. 

2) Division of model in eq. (5) into two parts–the adjustment model in eq.(6) and the prediction 

model in eq.(7) according to the initial identification and then solving for Δ in eq. (8), the predicted 

residuals vector 2V̂  from eq. (16) and its variance-covariance matrix. 

 

3) Use of the F test for the global test. If the zero hypotheses are rejected, further investigation (a t 

test) is needed to determine which ( il ) is responsible. 

 

APPLICATION TO ACTUAL NETWORK: 

For mathematical verification, a combined (Hybrid) geodetic net were chosen, which was adjusted 

by [Ghilani, 1994]. The systematic errors are corrected and the observed distances are reduced to mean 

see level. Goodness of fit test for this net after ordinary least square adjustment was failed which means 

that blunders exist, so the net was suitable to check our methods for blunders detection. 

 

 The specifications of this network were as follows [Ghilani, 1994]; (see appendix A) 

-Two control points (2000, 2001). 

-11 unknown points. 

-19 distance observations, and 17 angles. Fig (2) shows the configuration of the net. 
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Fig (1). Configuration of the geodetic net 

 

RESULTS AND DISCUSSIONS 

After performing the least square adjustment, each method was checked for blunders detection in 

the observation. The results had been summarized in the Table (2) 

 

Table (2) Comparison between blunder detection methods used for adjusting the geodetic network. 

 

T

he 

adj

ust

me

nt 

of 

the 

abo

ve 

net

work by using 1
st
 method (Standardized residuals) was done by [Ghilani, 1994], while this research adjust 

the same network by using the two other methods. 

 

Method Iteration 


2
 

test 
±σ  

Blundered 

observations 
Redundancy 

Standardized residuals method 3  Pass 1.162 2 12 

Robust estimation method 
1 

(One step) 
Pass 0.983 2 14 

F-t test method 
1 

(Two steps) 
Pass 1.165 2 12 
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It was found that the robust estimation method represent the better blunder detection technique due to its 

ability in what is called (multi-blunder detection), and the resulted higher accuracy indices, this is obvious 

from the comparing the values of ( ±σ). 

 

 

CONCLUSIONS 

It could be concluded the following: 

1. It is clear that standardized residuals method, Robust estimation method and F-t test method are 

all effective in blunder detection. 

2. A disadvantage on standardized residuals method was noticed, in that it is an iterative procedure 

or a single blunder detection technique. Robust estimation and F-t test has the advantage in that it 

is a multiple blunder detection techniques. 

3. From the two applications discussed, it is quite evident that Robust estimation technique gives a 

lower value for the final variance of unit weight ( 2

0̂ ) and also for the standard deviations of the 

adjusted unknown, which indicates that Robust estimation is the best blunder detection method. 

 

This lower value of variance could be explained in that the redundancy (n-u) remain fixed while in 

the standardized residuals method and F-t test method the redundancy decreased each time a 

blunder detected and removed 

 

4. Among all the weight functions used in robust estimation method it is highly recommended to use 

the (Cauchy) weight function. 
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APPENDIX (A) 

Blunder detection example 

============================ 
Number of Control Stations           = 2 
Number of Unknown Stations       =11 
Number of Distance observations  = 19 
Number of Angle observations     = 17 

 
Initial approximations for unknown stations        Control Stations 

 

Station X Y  Station X Y 

1 2 477 233.88 420 353.62 2000 2 476 334.60 419 710.09 

2 2 477 497.99 419 951.98 2001 2 476 297.98 419 266.82 

3 2 477 832.67 420 210.17  

4 2 478 023.86 420 438.88 

5 2 477 630.64 420 567.44 

6 2 477 665.36 420 323.31 

102 2 476 454.17 419 743.39 

103 2 476 728.88 419 919.69 

201 2 476 576.25 419 589.24 

202 2 476 948.76 419 331.29 

203 2 477 463.90 419 819.56 

 

Distance Observations 

 

Station 

Occupied 

Station 

Sighted 
Distance S 

1 3 615.74 0.02 

1 2 480.71 0.02 

3 1 615.74 0.02 

3 4 298.10 0.02 

3 6 201.98 0.02 

3 5 410.44 0.02 

3 2 422.70 0.02 

5 2 629.58 0.02 

5 1 450.67 0.02 

5 6 246.61 0.02 

5 4 397.89 0.02 

5 3 410.46 0.02 

102 103 327.37 0.02 

103 1 665.79 0.02 

201 202 453.10 0.02 

202 203 709.78 0.02 

203 3 537.18 0.02 

2000 102 125.24 0.02 
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2001 201 425.90 0.02 

Angle Observations 

 
Station 

Back sighted 

Station 

Occupied 

Station 

Fore sighted  
Angle S 

2 1 3 316° 48' 00.5" 6.3" 

      2       3 4  167° 32' 28.0"  14.5" 

2 3 6   71° 42' 51.5"       15.1" 

2 3 5 98° 09' 36.5"      10.3" 

2 3 1 51° 07' 11.0"        7.2"  

203 3 2    8° 59' 56.0"        6.5" 

2 5 3 318° 20' 54.5"      7.0" 

1 5 3 268° 49' 32.5" 9.8" 

6 5 3 338° 36' 38.5" 10.7" 

3 5 4 324° 17' 44.0" 8.1" 

2000 102 103 162° 58' 16.0" 28.9" 

102 103 1 172° 01' 43.0" 11.8" 

2001 201 202 263° 54' 18.7" 9.7" 

201 202 203 101° 49' 55.0" 8.1" 

202 203 3 176° 49' 10.0" 8.4" 

102 2000 2001 109° 10' 54.0" 25.5" 

2000 2001 201 36° 04' 26.2" 7.4" 
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SOLUTION  
 

 

         Adjusted stations 

                                               Error ellipse confidence level at 0.950 

         Station   X             Y           Sx        Sy        Su        Sv     t 

        ================================================================================ 

         1  2,477,236.78    420,351.57    26.138    27.582    95.745    40.382 137.21° 

         2  2,477,500.02    419,949.06    18.862    32.883    95.031    41.414 158.93° 

         3  2,477,835.61    420,206.18    22.972    41.726   124.575    38.036 155.07° 

         4  2,478,007.59    420,410.17    28.839    47.264   145.573    41.617 151.30° 

         5  2,477,631.63    420,566.15    32.636    36.320   127.266    40.399 138.75° 

         6  2,477,667.20    420,320.89    26.259    37.620   118.995    39.741 147.78° 

       102  2,476,455.42    419,742.35     9.931     6.023    27.726    15.494  75.95° 

       103  2,476,731.25    419,918.44    14.445    13.310    40.980    34.721 120.10° 

       201  2,476,576.61    419,589.00     8.329     9.077    27.541    19.397  37.62° 

       202  2,476,948.76    419,330.06    12.410    16.494    46.100    32.569  16.98° 

       203  2,477,465.47    419,816.79    15.649    30.287    85.777    36.510 163.29° 

 

 

Adjusted Distance Observations 

 

     Station   Station 

    Occupied   Sighted     Distance      V         S     Std.Res.    Red.# 

   ======================================================================= 

         1         3        616.23     0.495     5.356     26.05     0.746 

         1         2        480.95     0.243     5.921     13.29     0.689 

         3         1        616.23     0.495     5.356     26.05     0.746 

         3         4        266.81   -31.287     6.525  -1802.59     0.622* 

         3         6        203.77     1.789     6.889    106.83     0.579 

         3         5        413.76     3.317     5.059    171.47     0.773 

         3         2        422.77     0.069     5.459      3.67     0.736 

         5         2        630.97     1.394     6.012     76.87     0.679 

         5         1        449.39    -1.281     7.192    -79.16     0.541 

         5         6        247.83     1.225     7.100     74.85     0.553 

         5         4        407.04     9.153     7.819    614.84     0.458 

         5         3        413.76     3.297     5.059    170.43     0.773 

       102       103        327.25    -0.121    10.056    -17.16     0.103 

       103         1        665.70    -0.087    10.048    -12.18     0.105 

       201       202        453.37     0.268    10.526     92.01     0.017 

       202       203        709.85     0.075    10.051     10.51     0.104 

       203         3        537.24     0.060    10.056      8.53     0.103 

      2000       102        125.05    -0.188    10.138    -28.72     0.089 

      2001       201        425.95     0.048    10.063      6.82     0.102 
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Adjusted Angle Observations          

        2         1           3    316°49'53.8"     113.32"   2334.36   28.07   0.411 

        2         3           4    167°35'29.5"     181.54"   5764.13   22.07   0.322 

        2         3           6     71°43'01.5"      10.01"   5660.17    1.05   0.397 

        2         3           5     97°55'08.5"    -868.02"   2793.81 -101.88   0.684 

        2         3           1     51°06'18.6"    -52.42"    2462.81  -10.32   0.498 

      203         3           2      8°59'35.6"    -20.36"    3049.99  -13.36   0.055 

        2         5           3    318°25'19.8"    265.26"    1871.66   45.52   0.693 

        1         5           3    268°58'58.7"    566.22"    3246.9    79.45   0.529 

        6         5           3    338°42'49.1"    370.61"    4309.5    62.85   0.304 

        3         5           4    322°04'20.0"  -8004.04"    3222.81 -1745.41  0.321* 

     2000       102         103    162°23'46.9"  -2069.09"   10624.86 -110.49   0.420 

      102       103           1    171°57'47.3"   -235.73"    5605.07 -112.46   0.032 

     2001       201         202    263°58'29.6"    250.90"    4536.27  104.48   0.061 

      201       202         203    101°52'55.9"    180.90"    3608.54   58.03   0.148 

      202       203           3    176°50'15.3"     65.26"    3819.12   23.14   0.113 

      102      2000        2001    109°40'20.8"   1766.77"    9348.51  106.51   0.423 

     2000      2001         201     36°07'53.9"    207.69"    3440.52  104.46   0.072 

 

 

 Adjustment Statistics 
               Iterations = 4 

             Redundancies = 14 

 

       Reference Variance = 232,981.728 

             Reference So = ±482.7 

 

           Failed to pass X² test at 95.0% significance level! 

                          X² lower value = 5.63 

                          X² upper value = 26.12 

        Possible blunder in observations with Std.Res. > 1,588 

                      Convergence! 

 

Then the problem be as following:- 

 

Number of Control Stations            = 2 
Number of Unknown Stations        = 11 
Number of Distance observations   = 18 (It was 19) 
Number of Angle observations       = 17 

  

 After that readjustment will be done. 
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